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ABSTRACT

Under a natural assumption, which holds in the generic case, we prove

in this paper that, for the classical p-adic groups, the Aubert dual of

an irreducible, strongly positive square-integrable representation (in the

sense of Mœgl.,in-Tadić classification), is unitarizable. In this way, for this

important class of representations, we verify the conjecture which states

that the Aubert involution preserves unitarity.

1. Introduction

The problem of classification of the unitary dual of classical p-adic groups is

very important, and largely, unsolved. The unitarizability problem is an im-

portant problem in several aspects: unitary representations are crucial in the

harmonic analysis on the classical p-adic groups, generalizing the classical com-

mutative theory. On the other hand, unitarizable representations occur at the

local places of the automorphic representations, and, as such, have a number-

theoretic significance.

This problem is completely solved only for the general linear groups (Tadić,

Vogan), and for some groups of small rank: for, e.g., GSp(4) and Sp(4) (Tadić,

Sally) and some others. Also, generic unitary dual is classified for the quasi-split

classical groups (Lapid, Muić, Tadić), and there is also a work of Barbasch and
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Moy in the spherical case. As for the general linear groups over division alge-

bras, their unitary dual is classified modulo a conjecture which states that the

representation parabolically induced from an irreducible unitary representation

is irreducible.

In this paper, we tackle the unitarizability problem using the Aubert (i.e.,

generalized Zelevinsky’s involution). The involution on the Grothendieck group

of the smooth, finite length representations of a reductive group was studied by

many, including Zelevinsky, Iwahori, Matsumoto, Casselman, Bernstein, Bar-

basch, Moy, Schneider and Sthuler, but we use the definition which works for

a general reductive p-adic group as given in [2], and refer to it as the Aubert

involution.

One of the most intriguing conjectures about Aubert involution states that

it preserves unitarity. This conjecture was posed by Bernstein for the general

linear groups in [4] and proved by Tadić (in the case of general linear groups).

Also, Barbasch and Moy proved that, in the Iwahori case, involution preserves

unitarity.

It would be very helpful to know that this conjecture holds for the square-

integrable representations (of the classical groups). In this paper we start to

address this case by treating a special kind of the square-integrable representa-

tions, namely the strongly positive ones. They serve as the “building blocks”

for all the square-integrable representations, as can be seen from the Mœglin-

Tadić classification. They include generalized Steinberg representations, regular

discrete series etc.

To prove the unitarizability of Aubert dual of a strongly positive square-

integrable representation, we, roughly, proceed as follows: assume that σ is

an irreducible, strongly positive discrete series; we denote its Aubert dual by

σ̂. We find an irreducible square-integrable (mod center) representation δ of a

general linear group such that the induced representation δ o σ is irreducible

(the notation is explained in Section 2). The first point of reducibility of the

series of representations δνs o σ, where s is real and s ≥ 0, in this particular

case, is s = 1/2. Thanks to the results in [8] and [9], we know all the irreducible

subquotients of δν1/2 o σ. Using an inductive argument, we can prove that

Aubert duals of all these subquotients are unitarizable (because they appear as a

subquotients of the similar induced representation whose unitarizability follows

from a certain inductive argument). Now we calculate the signature of the

hermitian forms involved, and we get that the representation δ̂oσ̂ is unitarizable
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(and we know that it is irreducible and hermitian), forcing representation σ̂ to

be unitarizable, too.

Our approach uses results of Muić about reducibility and the composition

series of the generalized principal series [12] and [13]; some reducibility results

we use can be derived form the earlier results of Tadić [20], Jantzen [6] and

others.

Now we describe the content of the paper, section by section.

In Section 2, we recall the classification of the discrete series representations

of classical p-adic groups in terms of the admissible triples [8], [9], and the

notion of a strongly positive discrete series.

In the third section, we prove the unitarizability of the generalized Steinberg

representation using a simple idea of analyzing the ends of the “complementary

series” and proving that all the appearing subquotients are unitarizable. Also,

in this section we prove several more general results describing the structure of

the induced representations involved, and these results are used in the general

case of strongly positive discrete series.

In the fourth section, we prove that the Aubert dual of a strongly positive

discrete series whose cuspidal support on general linear group-side consists only

of the twists of one irreducible, self-dual cuspidal representation, is unitarizable.

We also introduce two-fold inductive procedure which we use for proving the

unitarizability; the case of the generalized Steinberg representation is used as a

basis of this procedure.

In the fifth section, using the same idea as in the fourth section, we prove our

statement for a general strongly positive discrete series. We also prove some

auxiliary statements which were self-evident in the previous cases (covered in

the third and the fourth sections).

Throughout the paper we assume that the basic assumption (which follows

from certain Arthur’s conjectures, [8],[9]) holds. We can formulate this assump-

tion in the following way: For an irreducible, self-dual, cuspidal representation ρ

of the group GL(n, F ) (F is p-adic) and an irreducible, cuspidal representation

σ of the classical group, there exists a unique αρ,σ ≥ 0 such that ναρ,σρ o σ

reduces (this is proved in [18]; the notation is explained in Section 2). The basic

assumption states that αρ,σ − αρ,1 ∈ Z (here 1 denotes the trivial representa-

tion of the trivial group). F. Shahidi has proved that αρ,1 ∈ 1
2Z, moreover, he

proved that the basic assumption holds if σ is generic.
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It is important to note that, in cases in which it is known that the basic

assumption holds (for example, when the square-integrable representation we

are studying is generic), our results are complete and there are no additional

conditions or hypothesis.

I want to express my gratitude to Prof. Shahidi for his warm welcome and

useful conversations during the preparation of this paper, and also to Purdue

University, where this paper was written.

2. Notation and Preliminaries

Let F be a nonarchimedean field of characteristic different from 2. Let Z,N,R,C

denote the ring of rational integers, positive rational integers and the field of

real numbers, the field of complex numbers, respectively.

The groups we are considering are of the following form: We have a tower of

the (full) orthogonal or symplectic groups Gn = G(Vn), which are the groups of

isometries of F -vector spaces Vn, endowed with the non-degenerate form. The

form is symmetric if the tower is orthogonal, and skew-symmetric, otherwise.

The subscript “n” denotes the split rank of the group Gn.

We now review some basic facts related to the representation theory of the

general linear groups [23]. By ν we denote a composition of the determinant

mapping with the normalized (in a usual way) absolute value on F . Let ρ

denote an irreducible cuspidal representation of GL(n, F ). Then, by a seg-

ment of cuspidal representations, denoted [ρ, ρνm], we mean an (ordered) set

{ρ, ρν, ρν2, . . . , ρνm}. To each such segment we attach an irreducible essen-

tially square-integrable representation, denoted δ([ρ, ρνm]), which is a unique

irreducible subrepresentation of ρνm × ρνm−1 × · · · × ρ. Here we use a well

known notation for the normalized parabolic induction for the general lin-

ear groups, with the usual choice of the standard parabolic subgroups. Let

σ1, . . . , σk denote square-integrable representations of the general linear groups.

If the real numbers s1, s2, . . . , sk satisfy s1 ≥ s2 ≥ · · · ≥ sk, the representation

σ1ν
s1 × σ2ν

s2 × · · · × σkν
sk has a unique irreducible quotient, the Langland’s

quotient, which we denote by L(σ1ν
s1 , σ2ν

s2 , . . . , σkν
sk).

Now we recall the corresponding notation for the classical groups. If πi, i =

1, . . . , k is a representation of the group GL(ni, F ) and if τ is a representation of

the group Gm, then by π1 ×π2 × · · ·×πk o τ we denote a parabolically induced

representation of the group Gn, induced from the standard parabolic subgroup
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with the Levi subgroup isomorphic to GL(n1, F )× · · ·×GL(nk, F )×Gm. Here

n = n1 + n2 + · · · + nk + m, and we make the usual choice of the minimal

parabolic subgroup which consists of the upper-triangular matrices. Let σi, i =

1, . . . , k be a square-integrable representation ofGL(ni, F ). If τ is an irreducible

tempered representation of the group Gm, σi’s and s1, s2, . . . , sk satisfy the

conditions as above, and, additionally, sk > 0, then, analogously, the Langland’s

quotient of the representation σ1ν
s1 × σ2ν

s2 × · · · × σkν
sk o τ is denoted by

L(σ1ν
s1 , σ2ν

s2 , . . . , σkν
sk ; τ).

For a reductive group G, by R(G) we denote the Grothendieck group of

smooth, finite length representations of G. Let R =
⊕

n≥0R(GL(n, F )), and

R1 =
⊕

n≥0Gn. HereGL(0, F ) andG0 denote the trivial group. For a represen-

tation σ of the group Gn, by sk(σ) we denote the (normalized) Jacquet module

of σ with respect to the standard Levi subgroup isomorphic to GL(k, F )×Gn−k.

For an irreducible representation σ of some Gn, we introduce

µ∗(σ) =

n∑

k=0

s.s.(sk(σ)),

where “s.s.” stands for the semisimplification. We extend µ∗ by linearity to

whole R1, and we get a mapping µ∗ : R1 → R ⊗ R1. In the same

way, for an irreducible representation π of GL(n, F ), let rk(π) denote Jacquet

module of π with respect to the standard Levi subgroup isomorphic to

GL(k, F ) ×GL(n− k, F ). We introduce

m∗(π) =

n∑

k=0

s.s.(rk(π)),

and extend m∗ by linearity to the mapping m∗ : R → R ⊗ R. Denote by

κ : R ⊗ R → R ⊗ R a mapping defined by κ(
∑
xi ⊗ yi) =

∑
yi ⊗ xi. We

introduce a homomorphism M∗ : R → R⊗R in the following way

M∗ = (m⊗ 1) ◦ (∼ ⊗m∗) ◦ κ ◦m∗.

Then, for π ∈ R and σ ∈ R1, the following holds (Theorems 5.4 and 6.5 of [19])

(1) µ∗(π o σ) = M∗(π) o µ∗(σ).

For an irreducible representation σ of the general linear or a classical group

we consider, its Aubert dual [2] (in the Grothendieck group) is also, up to a

sign, an irreducible representation. This irreducible (actual) representation we

denote by σ̂.
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Now we briefly recall the definition of the invariants of the discrete series of

the groups Gn, namely, the definitions of the Jordan block, function ε and the

cuspidal support [8] and [9].

A partial supercuspidal support of a discrete series representation σ of Gn is

an irreducible supercuspidal representation σcusp of some Gm′ such that there

exists an irreducible admissible representation π of some GL(mπ, F ) (this de-

fines mπ) such that σ is a subrepresentation of π o σcusp.

The set Jord(σ) is defined as a set of all pairs (a, ρ) where ρ ∼= ρ̃ is an

irreducible supercuspidal representation of some GL(mρ, F ) and a > 0 is an

integer such that both of the following properties are satisfied:

(i) a is even if and only if L(s, ρ, r) has a pole at s = 0. The local L-

function L(s, ρ, r) is the one defined by Shahidi (for example, [16]),

where r = Λ2Cmρ is the exterior square of the standard representation

if Gn is symplectic or even orthogonal group, and r = Sym2Cmρ if Gn

is odd orthogonal.

(ii) the induced representation

δ([ν−
(a−1)

2 ρ, ν
(a−1)

2 ρ]) o σ

is irreducible.

We do not recall the exact definition of the function ε; it can be found in [8].

These invariants completely describe the representation σ.

Now we briefly recall the notion of the triple. (Jord, σ′, ε) is a triple if σ′

is an irreducible supercuspidal representation of some Gm, Jord is a finite set

(possibly empty) of pairs (a, ρ) which satisfy the property (i) from above. ε

is a function, partially defined on Jord ∪ Jord × Jord. (We will not recall the

definition and requirements on ε; we refer to [9] and [12].

We introduce Jordρ = {a : (a, ρ) ∈ Jord}. For a ∈ Jordρ we define (if it

exists) a− = max{b ∈ Jordρ : b < a}.

For the present purpose, the most important notion is that of an alternated

triple. The triple (Jord, σ′, ε) is of alternated type if for any ρ such that Jordρ 6=

∅, the following holds:

1. If a ∈ Jordρ such that a− is defined, then

ε(a, ρ)ε(a−, ρ) = −1.
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2. There is an increasing bijection φρ : Jordρ → Jord′
ρ(σ

′), where

Jord′
ρ(σ

′) =





Jordρ(σ
′) ∪ {0} if a is even and ε(min Jordρ) = 1;

Jordρ(σ
′) otherwise.

The admissible triples are obtained from the alternated ones by the successive

relation of dominance [9].

The classification of Mœglin and Tadić [9] states that there is one-to-one

correspondence between the set of the equivalence classes of the discrete series

representations (of all the groups in one tower) and the set of all admissible

triples. Namely, the triple of invariants of an irreducible square-integrable rep-

resentation is an admissible triple, and, vice versa, each admissible triple is

triple of invariants of some square-integrable representation.

A square integrable representation is of a strongly positive type if the corre-

sponding triple is of an alternated type.

We can explicitly characterize strongly positive discrete series as follows: If

(Jord, σ′, ε) is an alternated triple corresponding to the discrete series σ, then

σ is a unique subrepresentation of

×ρ ×
kρ

i=1 δ([ν
φρ(a

ρ
i
)+1

2 ρ, ν
a

ρ
i
−1

2 ρ]) o σ′.

Here, for each ρ such that Jordρ 6= ∅, we have written down the elements of

Jordρ in the increasing order

aρ
1 < aρ

2 < · · · < aρ
kρ
.

We have the following important characterization of the strongly positive

discrete series.

Proposition 2.1 ([12]): Let σ be a discrete series representation of Gn. Then,

σ is strongly positive if and only if for each representation

ρ1ν
s1 × · · · × ρkν

sk o σcusp,

where ρi, i = 1, . . . , k are irreducible cuspidal representations and si, i =

1, . . . , k real numbers, such that

σ ↪→ ρ1ν
s1 × · · · × ρkν

sk o σcusp,

we have si > 0 for each i.
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3. Generalized Steinberg representation

Let ρ ∼= ρ̃ be an irreducible unitary cuspidal representation of the group

GL(k, F ), and σ′ an analogous representation of Gm. Assume that there exists

α > 0 such that ρνα o σ′ reduces. (There always exists a unique s0 ≥ 0 such

that ρνs0 o σ′ reduces, [18]). For any integer n ≥ 0, the representation

ρνn+α × ρνn−1+α × · · · × ρνα o σ′

has a unique irreducible subrepresentation [21], which we denote by σn. The rep-

resentation σn is a square-integrable representation [21], and because of the ob-

vious analogy with the Steinberg representation for the classical groups (which

is the special case of the above construction, obtained for the trivial represen-

tation σ′ of the trivial group, and the trivial character ρ of GL(1, F )), is called

a generalized Steinberg representation.

In this paper, we shall consider the case when α belongs to 1
2Z. This is

expected to be always the case. Further, basic assumption would imply this.

We now describe the Jordan block and the function ε attached to the general-

ized Steinberg representation. The generalized Steinberg representation belongs

to the set D(ρ, σ′) [7] (the set of all the square-integrable representations of the

classical groups in one tower, such that their partial cuspidal support is σ′, and

the rest of the cuspidal support on the GL-side is formed from the twists of the

representation ρ). Because of that, we consider the function ε as a function on

Jordρ or Jordρ × Jordρ.

(1) If α = 1/2, then Jordρ(σ
′) = ∅ (so the function ε is not defined on

Jordρ(σ
′)), and Jordρ(σn) = {2n+ 2} with ε(2n+ 2) = 1.

(2) If α ∈ 1/2 + Z, and α > 1/2, then Jordρ(σ
′) = {2, . . . , 2α− 3, 2α− 1},

with the alternating function ε on Jordρ(σ
′) with ε(2) = −1. Then

Jordρ(σn) = {2, . . . , 2α− 3, 2n+2α+ 1}, with the alternating function

ε on Jordρ(σn) with ε(2) = −1.

(3) If α ∈ Z>0, then Jordρ(σ
′) = {1, . . . , 2α − 3, 2α − 1} with the alter-

nating function ε defined only on pairs, and analogously, Jordρ(σn) =

{1, . . . , 2α−3, 2n+2α+1}, with the alternating function ε defined only

on pairs.

To prove that the Aubert dual σ̂n of the generalized Steinberg representation

σn is an unitarizable representation, we use the following simple idea: for a

certain discrete series representation δn of the general linear group, such that
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δnoσn is irreducible, we prove that the representation δ̂noσ̂n (again, necessarily

irreducible) is unitarizable. Because the representation δ̂n ⊗ σ̂n is Hermitian,

from this follows that the representation σ̂n is unitarizable.

To prove the unitarizability of the representation δ̂n o σ̂n, we find the first

positive reducibility point of the representation νsδ̂n o σ̂n, s ≥ 0, then prove

(by certain inductive argument) that all the irreducible subquotients appearing

in the composition series of this (reducible) representation are unitarizable. To

show the unitarizability of δ̂n o σ̂n, we use Jantzen filtration and, again, certain

inductive argument.

We will denote σ−1 = σ′.

For an integer n ≥ 1, we define

δn = δ([ν−(n+α−3/2)ρ, ν(n+α−3/2)ρ]),

δ′n = δ([ν−(n+α−1)ρ, ν(n+α−1)ρ]),

δ′′n = δ([ν−(n+α−1/2)ρ, ν(n+α−1/2)ρ]).

We consider the representations δn o σn, δ′n o σn−1 and δ′′n o σn−2.

The representations δn o σn and δ′′n o σn−2 are irreducible, since

2(n+ α− 3/2) + 1 and 2(n+ α− 1/2) + 1

differ in parity from the elements in Jordρ(σn) and Jordρ(σn−2) (by the well-

known result of Tadić (Theorem 13.2 of [20]; also see [12, Theorem 2.3]). Also,

if n = 1 and α = 1/2, then Jordρ(σ
′) = ∅, and the similar argument applies.

On the other hand, 2(n+α−1)+1 = 2n+2α−1 is an element of Jordρ(σn−1),

so, by the the definition of Jordρ, the representation δ′n o σn−1 is irreducible.

We now consider the representation νsδn o σn, s ≥ 0. The first point of

reducibility is s = 1/2, and we analyze

(2) ν
1
2 δn o σn = δ([ν−(n+α−2)ρ, νn+α−1ρ]) o σn.

Proposition 3.1: Assume that the representations ˆσn−1 and ˆσn−2 are unita-

rizable. Then all the irreducible subquotients of the representation ν
1
2 δ̂n o σ̂n

are unitarizable.

Proof. Actually, we will prove this proposition for all cases except when both

n = 1 and α = 1/2 because for this case the structure of the representation

ν
1
2 δn o σn is different from the rest of the cases.
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Using the notation of [12], for each of the essentially square-integrable rep-

resentations δ∗ of the general linear group which we consider, we introduce

numbers l1 and l2 such that δ∗ = δ([ν−l1ρ, νl2ρ]). For an essentially square-

integrable representation ν1/2δn from equation (2) we have l1 = n+ α− 2 and

l2 = n+ α− 1. We note that l1 ≥ 0, unless n = 1 and α = 1/2. We shall treat

that case later, so, for now, we assume l1 ≥ 0. Then 2l1 + 1 = 2n+ 2α− 3 and

2l2 + 1 = 2n+ 2α− 1 so

[2l1 + 1, 2l2 + 1] ∩ Jordρ(σn) = ∅.

Then, in the appropriate Grothendieck group, the following holds

ν1/2δn o σn = L(ν1/2δn; σn) + σ′
1 + σ′

2,

where σ′
1 and σ′

2 are the discrete series obtained from σn by extending the

admissible triple of σn in a way described in [9], see also [12, Theorems 2.1 and

2.3]. Again, σ′
1 and σ′

2 belong to D(ρ, σ′). To be more specific:

Jordρ(σ
′
i) = Jordρ(σn) ∪ {2n+ 2α− 3, 2n+ 2α− 1}, i = 1, 2

and the ε function on Jordρ(σ
′
1) extends the (alternating) function ε on

Jordρ(σn) (or Jordρ×Jordρ) in such a way that ε(2n+2α−3)ε(2n+2α−1)−1 = 1

and ε(2α − 3)ε(2n + 2α − 3)−1 = 1; the ε function on Jordρ(σ
′
2) extends the

function ε on Jordρ(σn) in a way that ε(2n+ 2α− 3)ε(2n+ 2α− 1)−1 = 1 and

ε(2α− 3)ε(2n+ 2α− 3)−1 = −1.

We now consider the representation νsδ′′noσn−2. The first non-negative point

of reducibility of this representation is s = 1/2, and

ν
1
2 δ′′n o σn−2 = δ([ν−(n+α−1)ρ, νn+αρ]) o σn−2.

Here again l1 = n+ α− 1 ≥ 0, and

[2l1 + 1, 2l2 + 1] ∩ Jordρ(σn−2) = ∅,

so

δ([ν−(n+α−1)ρ, νn+αρ]) o σn−2 = σ′′
1 + σ′′

2 +L(δ([ν−(n+α−1)ρ, νn+αρ]); σn−2),

where

Jordρ(σ
′′
i ) = Jordρ(σn−2) ∪ {2n+ 2α− 1, 2n+ 2α+ 1}, i = 1, 2,
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and the function ε on Jordρ(σ
′′
1 ) extends the (alternating) function ε on

Jordρ(σn−2) (or Jordρ(σn−2 × Jordρ(σn−2)) in such a way that

ε(2n+ 2α− 1)ε(2n+ 2α+ 1)−1 = 1 and ε(2n+ 2α− 3)ε(2n+ 2α− 1)−1 = 1;

the situation is similar with σ′′
2 . By the comparison of the parameters, we

immediately see that σ′
2 = σ′′

1 .

Now, we consider the representation νsδ′n o σn−1 for s ≥ 0. The first re-

ducibility point is s = 1, and then we have

νδ′n o σn−1 = δ([ν−(n+α−2)ρ, νn+α−1ρ]) o σn−1.

We have [2l1 + 1, 2l2 + 1] ∩ Jordρ(σn−1) = {2n + 2α − 1}, and 2l1 + 1 /∈

Jordρ(σn−1), 2l2 + 1 /∈ Jordρ, so we can now apply [12, Theorem 4.1]. By

comparing the admissible triples of the discrete series appearing as subquotients,

we get

νδ′n o σn−1 = L(νδ′n; σn−1) + L(ν
1
2 δn;σn) + L(ν

1
2 δ′′n;σn−2) + σ′

1 + σ′′
2 .

Now, we apply the well-known properties of the Aubert involution: The first

reducibility point of the representation νsδ̂n o σ̂n, νsδ̂′n o σ̂n−1, and νsδ̂′′n o σ̂n−2

for s ≥ 0 is 1/2, 1 and 1/2, respectively, and the following holds:

ν
1
2 δ̂n o σ̂n = ̂L(ν

1
2 δn; σn) + σ̂′

1 + σ̂′
2,(3)

νδ̂′n o σ̂n−1 = ̂L(νδ′n; σn−1) + ̂L(ν
1
2 δn;σn) + ̂L(ν

1
2 δ′′n;σn−2) + σ̂′

1 + σ̂′′
2 ,(4)

ν
1
2 δ̂′′n o σ̂n−2 = σ̂′

2 + σ̂′′
2 + ̂L(ν

1
2 δ′′n; σn−2).(5)

We can conclude that all the irreducible subquotients of the representation

ν1/2δ̂n o σ̂n (except in the case when n = 1 and α = 1/2) are unitariz-

able, provided the representations σ̂n−1 and σ̂n−2 are unitarizable, because

these subquotients appear at the ends of the complementary series described

above.

In the case n = 1 and α = 1/2 we note that we have the following (by the

results of Tadić [20] or [12, Theorem 5.1]):

ν
1
2 ρo σ̂1 = ̂L(ν

1
2 ρ; σ1) + σ̂′

1,(6)

̂νδ([ν−
1
2 ρ, ν

1
2 ρ]) o σ̂0 = ̂L(νδ([ν−

1
2 ρ, ν

1
2 ρ]);σ0) + σ̂′

1,(7)

̂δ([ν−
1
2 ρ, ν

3
2 ρ]) o σ̂′ = ̂L(δ([ν−

1
2 ρ, ν

3
2 ]); σ′) + σ̂′

1 + σ̂′
2.(8)



262 MARCELA HANZER Isr. J. Math.

Here Jordρ(σ
′
i) = {2, 4}, i = 1, 2, and εσ′

1
(2) = εσ′

1
(4) = 1, and εσ′

2
(2) =

εσ′

2
(4) = −1 .

To prove the unitarizability of the representation δ̂n o σ̂n, we will need to

calculate the Jantzen filtration of the representation νsδ̂n o σ̂n near the point

s = 1/2. To accomplish that, we will need to know (the zeroes or the poles of)

the Plancherel measure µ(±1/2, δ̂n ⊗ σ̂n).

We will calculate this Plancherel measure in a little more general context

which will be of some use later, when we treat more general situation. We

introduce the following notation δ(a, ρ) = δ([ν−(a−1)/2ρ, ν(a−1)/2ρ]).

Lemma 3.2: Let ρ be an irreducible, self-dual, cuspidal representation of

GL(k, F ), and let a > 2 be a rational integer, such that a is odd if and only if

L(s, ρ, r) has a pole for s = 0. Let σ be a discrete series representation of the

group Gm such that a − 1, a + 1 /∈ Jordρ(σ). Then, the Plancherel measure

µ(s, δ̂(a, ρ) ⊗ σ̂) has a simple pole for s = ± 1
2 .

Proof. The Plancherel measure in this (non-tempered case) is defined using the

intertwining operator A(s, δ̂(a, ρ) ⊗ σ̂) : νsδ̂(a, ρ) o σ̂ → ν−sδ̂(a, ρ) o σ̂ in the

following way (up to an immaterial factor):

A(−s, δ̂(a, ρ) ⊗ σ̂)A(s, δ̂(a, ρ) ⊗ σ̂) = µ(−s, δ̂(a, ρ) ⊗ σ̂)−1.

In the previous expression, the operators A(s, δ̂(a, ρ) ⊗ σ̂), s ∈ R are the

meromorphic continuations of the integral intertwining operators which con-

verge for s >> 0. For the calculation of this Plancherel measure, we use the

results of Ban [3, Corollary 4.2, Lemmas 6.4 and 7.1]. Although in the state-

ments of these lemmas and corollary there is an assumption which states that

σ̂ is unitarizable, this was not actually used for obtaining the following result:

A(−s, δ̂(a, ρ) ⊗ σ̂)A(s, δ̂(a, ρ) ⊗ σ̂) = µ(−s, δ(a, ρ) ⊗ σ)−1.

So, we actually calculate (the zeroes and the poles) of the Plancherel measure

attached to a standard representation νsδ(a, ρ) o σ.
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By the basic assumption, the Plancherel measure µ(s, δ(a, ρ) ⊗ σ) is, up to

an entire invertible function, equal to ([8], [9, Section 13])

∏

(ρ′,a′)∈Jord(σ)

L(1 + s, δ(a, ρ) × δ(a′, ρ′))L(1 − s, δ(a, ρ) × δ(a′, ρ′))

L(s, δ(a, ρ) × δ(a′, ρ′))L(−s, δ(a, ρ) × δ(a′, ρ′))

×
L(1 + 2s, δ(a, ρ), r)L(1 − 2s, δ(a, ρ), r)

L(2s, δ(a, ρ), r)L(−2s, δ(a, ρ), r)
.

Now we have [10, Lemma 2.1]

L(s, δ(a, ρ) × δ(a′, ρ′)) =

min{a,a′}∏

j=1

L(s+
a′ + a

2
− j, ρ× ρ′).

Since we are interested only in s ∈ R, we analyze these expressions for ρ′ ∼= ρ.

Then, for s = ±1/2, the only possibility for a zero or a pole to occur in the

first line of the expression for the Plancherel measure, is when a′ = a + 1 or

a = a′ + 1, but since a+ 1, a− 1 /∈ Jordρ(σ), this cannot happen.

Now, a zero or a pole of the Plancherel measure can only come from the

expression L(0,δ(a,ρ),r)
L(−1,δ(a,ρ),r) . If r = Λ2ρk, then we introduce r = Sym2ρk, and vice

versa.

Firstly, we assume that the representation ρν1/2 o 1 reduces, which means

that L(s, ρ, r) has a pole for s = 0 (and also k has to be even.) Then we apply

Lemma 4.2 from [11] which gives us the existence of the pole of L(s, δ(a, ρ), r)

for s = 0, and non-existence for s = −1. Now we want to calculate the order of

this pole. From ([17], Proposition 8.1 with a odd) we have:

L(0, δ(a, ρ), r) =

a+1
2∏

i=1

L(a+ 1 − 2i, ρ, r)

a−1
2∏

i=1

L(a− 2i, ρ, r).

The only pole in the previous expression appears for i = (a+ 1)/2 in L(0, ρ, r)

and it is a simple pole, so L(s, δ(a, ρ), r) has a simple pole for s = 0.

Secondly, we assume ρνs′

o 1 reduces for s′ ∈ {0, 1}. Then L(0, ρ, r) 6= ∞

(e.g. [10, Lemma 2.3]), so L(0, ρ, r) = ∞. Now, we apply once more [11, Lemma

4.2], and obtain L(0, δ(a, ρ), r) = ∞ (assuming (a−1)/2 ≥ 1/2). Now, we again

apply [17, Proposition 8.1], a is now even:

L(0, δ(a, ρ), r) =

a/2∏

i=1

L(a+ 2i− 3, ρ, r)L(a− 2i, ρ, r).
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The only pole appears for i = a/2 in L(0, ρ, r), again the pole in L(0, δ(a, ρ), r)

is simple.

For s = 1/2 we get completely analogous situation.

Remark: In almost all situations in which we need a calculation of the Plancherel

measure, the conditions will be as in the previous lemma. The situations in

which a = 1 or a = 2 are the following ones:

• Let σ1 be a discrete series with the property Jordρ(σ1)=∅ and ν1/2ρoσ1

reduces. Let σ be a unique subrepresentation of ν3/2ρ× ν1/2ρoσ1. We

have to calculate the Plancherel measure µ(1/2, ρ⊗ σ̂).

• Let σ1 be a discrete series with the property Jordρ(σ1) = {1} (and

Jordρ(σ1,cusp) = {1}). Let σ be a unique subrepresentation of

ν2ρ× νρo σ1. We have to calculate the Plancherel measure

µ(1/2, δ([ν−1/2ρ, ν1/2ρ]) ⊗ σ̂).

For both cases, we calculate the Plancherel measure using the result of Heir-

mann, mentioned in Lemma 3.7.

We now prove a more general lemma than we need right now, but it will be

of some use later. It explains a structure of the Aubert dual of the induced

representation obtained when adding two more elements in the Jordan block of

a strongly positive discrete series.

Lemma 3.3: Let σ be a strongly positive discrete series representation of the

group Gm. Let ρ be an irreducible cuspidal self-dual representation of the

group GL(k, F ), and let a− < a be positive integers of the same parity (they

are assumed to be even if and only if L(s, ρ, r) has a pole for s = 0). Assume

that [a−, a]∩Jordρ(σ) = ∅. Then, the representation
̂

L(δ([ν−
a
−

−1

2 ρ, ν
a−1
2 ρ]);σ)

is a unique irreducible quotient of the representation
̂

δ([ν−
a−1
2 ρ, ν

a
−

−1

2 ρ]) o σ̂,

i.e., a unique subrepresentation of
̂

δ([ν−
a
−

−1

2 ρ, ν
a−1
2 ρ]) o σ̂.

Proof. Let σ1 and σ2 be the (unique) subrepresentations of

δ([ν−
a
−

−1

2 ρ, ν(a−1)/2ρ]) o σ.

We denote by t = (a + a−)/2. Let G = Gtk+m, MΘ = M = GL(tk, F ) ×Gm.

Let wl be the longest element in the (absolute) Weyl group of G, and let wl,Θ

be the longest element in W (MΘ/A∅). Then w = wlwl,Θ is the longest element
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in the set {w′ ∈ W : w′(Θ) > 0}, and, by the well-known properties of the

Aubert involution [2], we have

(9) rM,G(π̂) = w ◦Dw−1(M) ◦ rw−1(M),G(π)

for a representation π of the group G. Here, Dw−1(M) denotes the Aubert

involution with respect to the corresponding group; in this case w−1(M) = M .

To simplify the notation, we denote δ = δ([ν−
a
−

−1

2 ρ, ν
a−1
2 ρ]). In the Grothen-

dieck group we have

δ̂ o σ̂ = σ̂1 + σ̂2 + L̂(δ;σ).

For any irreducible subquotient π of the representation
̂̃
δo σ̂ to be a quotient

of that representation, it is necessary that it has δ̂ ⊗ σ̂ as a subquotient in

the appropriate Jacquet module (this follows from the Frobenius reciprocity).

Using formula (9), we see that, in that case, a representation π̂ (a subquotient

of δ o σ) should have a subquotient δ̃ ⊗ σ in the appropriate Jacquet module

(and the representation L(δ;σ) has that property). We will prove that δ̃ ⊗ σ

comes with the multiplicity one in µ∗(δ o σ), which will then, in turn, prove

our claim.

In the Grothendieck group, by (1), we have:

(10) M∗(δ) o µ∗(σ)

=

a−1
2∑

i=−
a
−

−1

2 −1

a−1
2∑

j=i

(
δ([ν−iρ, ν

a
−

−1

2 ρ]) × δ([νj+1ρ, ν
a−1
2 ρ])

⊗ δ([νi+1ρ, νjρ])

)
o µ∗(σ).

We want to see when, in the above sum, the subquotient

δ̃ ⊗ σ = δ(ν−
a−1
2 ρ, ν

a
−

−1

2 ρ]) ⊗ σ

appears. So, let π1 ⊗ π2 be an irreducible subquotient of µ∗(σ). Then, we

analyze the summands of the form

δ([ν−iρ, ν
a
−

−1

2 ρ]) × δ([νj+1ρ, ν
a−1
2 ρ]) × π1 ⊗ δ([νi+1ρ, νjρ]) o π2.

Firstly, we consider the case j = i. Then the factor δ([νi+1ρ, νjρ]) does not

exist, so then π2 = σ, which forces π1 = 1, and we then analyze

δ([ν−iρ, ν
a
−

−1

2 ρ]) × δ([νi+1ρ, ν
a−1
2 ρ]) ⊗ σ.
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We want δ(ν−(a−1)/2ρ, ν(a−−1)/2ρ]) to appear as a subquotient in the first factor

of the tensor product; so we must have ν−(a−1)/2ρ in the cuspidal support

of δ([ν−iρ, ν(a−−1)/2ρ]) × δ([νi+1ρ, ν(a−1)/2ρ]). Assume ν−(a−1)/2ρ appears in

the cuspidal support of δ([ν−iρ, ν(a−−1)/2ρ]). From this we conclude that i ≥

(a−1)/2, which forces i = (a−1)/2 and then the summand is actually equal to

δ(ν−(a−1)/2ρ, ν(a−−1)/2ρ]) ⊗ σ. If we assume it appears in δ([νi+1ρ, ν(a−1)/2ρ])

we get a contradiction.

Assume now j > i. We want to have

δ(ν−
a−1
2 ρ, ν

a
−

−1

2 ρ]) ≤ δ([ν−iρ, ν
a
−

−1

2 ρ]) × δ([νj+1ρ, ν
a−1
2 ρ]) × π1.

But, on the right-hand side we have ν(a−1)/2ρ in the cuspidal support, and on

the left-hand side we do not, unless j+1 > (a−1)/2 which leads to j = (a−1)/2.

Then, we must have

δ̃ = δ([ν−
a−1
2 ρ, ν

a
−

−1

2 ρ]) ≤ δ([ν−iρ, ν
a
−

−1

2 ρ]) × π1.

Since δ̃ is non-degenerate, by the results of Zelevinsky, π1 has to be non-

degenerate, too, so equal to a product of the essentially square-integrable rep-

resentations, and irreducible. This leads to π1 = δ([ν−(a−1)/2ρ, ν−i−1ρ]). So

π1 ⊗ π2 = δ([ν−(a−1)/2ρ, ν−i−1ρ]) ⊗ π2 ≤ µ∗(σ). Since i < j = (a − 1)/2 and

−i−1 ≤ (a−−1)/2, this violates the square–integrability criterion of Casselman

[5, Theorem 4.4.6] for σ, a contradiction. So the subquotient δ̃⊗σ appears only

for j = i = (a− 1)/2, and the multiplicity is indeed one.

Now, combining Lemma 3.2 and Lemma 3.3, we obtain

Lemma 3.4: Let σ be a strongly positive discrete series representation of

the group Gm. Let ρ be an irreducible self-dual representation of the group

GL(k,F ), and let a− and a be positive integers with a = a− + 2, (they

are assumed to be even if and only if L(s, ρ, r) has a pole for s = 0).

Assume that a, a− /∈ Jordρ(σ). Assume that the intertwining operators

A(1/2) :
̂

δ([ν−
a
−

−1

2 ρ, ν
a−1
2 ρ]) o σ̂ →

̂
δ([ν−

a−1
2 ρ, ν

a
−

−1

2 ρ]) o σ̂ and A(−1/2) :
̂

δ([ν−
a−1
2 ρ, ν

a
−

−1

2 ρ])o σ̂ →
̂

δ([ν−
a
−

−1

2 ρ, ν
a−1
2 ρ])o σ̂ are holomorphic. Then, we

have Ker(A(1/2)) =
̂

L(δ([ν−
a
−

−1

2 ρ, ν
a−1
2 ρ]);σ) and Ker(A(−1/2)) = π, where

̂
δ([ν−

a
−

−1

2 ρ, ν
a−1
2 ρ]) o σ̂/

̂
L(δ([ν−

a
−

−1

2 ρ, ν
a−1
2 ρ]);σ) ∼= π.
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Proof. We denote δ = δ([ν−
a
−

−1

2 ρ, ν
a−1
2 ρ]). Then, we introduce X ′ =

̂̃
δ o σ̂

and X = δ̂ o σ̂. The representation X ′ has a unique quotient, namely L̂(δ;σ).

The representations σ1 and σ2 are introduced in Lemma 3.3. There are sub-

representation spaces W1 ⊂ W ⊂
̂̃
δ o σ̂ such that W1 is a representation space

of σ̂1 (or σ̂2) and
̂̃
δ o σ̂/W ∼= L̂(δ;σ) (by Lemma 3.3). If we assume that

Ker(A(− 1
2 )) = W1, then Im(A(− 1

2 )) would be a subspace of X whose irre-

ducible subrepresentation is not L̂(δ;σ), which is impossible. By Lemma 3.2,

we know that there exists an holomorphic function h defined near s = 1/2 such

that h(1
2 ) 6= 0 and

(11) A(−s)
1

s− 1/2
A(s) = h(s)

for s ≈ 1
2 . If we assume that Ker(A(1/2)) = W ′

1, for a subspace W ′
1 ⊂ X

different from L̂(δ;σ), then W ′
1/L̂(δ;σ) ∼= σ̂1 (or σ̂2). In an appropriate K-type

we can pick a holomorphic section f such that f1/2 ∈ W ′
1 \ L̂(δ;σ). In this K

type we have

A(s) = A(1/2) + (s− 1/2)A′(1/2) + · · · .

This means that lims→1/2
1

s−1/2A(s)f = A′(1/2)f , and this is not in L̂(δ;σ)

(for an appropriate type), so A(−1/2)A′(1/2)f = 0, but according to (11) this

cannot hold. So, we obtain that Ker(A(1/2)) = L̂(δ;σ).

In the course of the inductive procedure which we employ when we calculate

the signatures, we will need the following result.

Lemma 3.5: Let σ be a strongly positive discrete series, ρ an irreducible self-

dual cuspidal representation of GL(k, F ) such that Jordρ(σ) 6= ∅. Let s ≥ 1 be

a number such that 2s− 1 ∈ Jordρ(σ) and 2s+1 /∈ Jordρ(σ), so that a strongly

positive discrete series σ1 (with Jordρ(σ1) = Jordρ(σ) ∪ {2s+ 1} \ {2s− 1}) is

a unique subrepresentation of νsρo σ. Then, σ̂1 is a unique subrepresentation

of ν−sρo σ̂.

Proof. We will prove the equivalent statement: σ̂1 is a unique quotient of the

representation νsρ o σ̂. It is sufficient to prove that the multiplicity of the

subquotient νsρ⊗ σ in µ∗(νsρo σ) is equal to 1. Let π1 ⊗ π2 be an irreducible

subquotient in µ∗(σ). Using the formula

µ∗(νsρo σ) = (1 ⊗ νsρ+ νsρ⊗ 1 + ν−sρ⊗ 1) o µ∗(σ),
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we see that the only possibility for νsρ⊗σ to appear as a subquotient in µ∗(νsρo

σ), besides the obvious one (when π1 ⊗ π2 = 1 ⊗ σ), occurs when π1 = νsρ, so

νsρ⊗π2 ≤ µ∗(σ) with the property σ ≤ νsρoπ2. If π2 is a representation of the

group Gm, let P = MN denote a member of an associate class of the standard

parabolic subgroups in Gm with the property that rP,Gm(π2) is cuspidal. So, if

ρ1ν
s1⊗ρ2ν

s2⊗· · ·⊗ρlν
sl⊗σcusp is any irreducible subquotient of rP,Gm(π2), this

means νsρ⊗ρ1ν
s1 ⊗ρ2ν

s2 ⊗· · ·⊗ρlν
sl ⊗σcusp ≤ rP ′,Gm′

(σ), for an appropriate

P ′ and Gm′ . But the representation σ is strongly positive, which forces s1 >

0, s2 > 0, . . . , sl > 0. The Casselman criterion for square integrability is satisfied

for the representation π2, moreover, π2 is strongly positive. In order for νsρoπ2

to be reducible, and to have a square integrable subquotient (namely σ), with

s ≥ 1, the following must hold: Jordρ(π2) 6= ∅ and 2s − 1 ∈ Jordρ(π2), 2s +

1 /∈ Jordρ(π2). But then, for the subrepresentation σ we must have 2s + 1 ∈

Jordρ(σ), a contradiction.

Proposition 3.6: Assume that, for n > 1, the representations σ̂n−1 and σ̂n−2

are unitarizable. Then, if the basic assumption holds, the representation σ̂n is

unitarizable.

Proof. If we assume the unitarizability of the representations σ̂n−1 and σ̂n−2,

by Proposition 3.1, we know that all the subquotients of ν1/2δ̂n o σ̂n are uni-

tarizable. To prove the unitarizability of the representation δ̂n o σ̂n, we will

calculate the signature of the (group-invariant) Hermitian form existing on the

representation space of this representation using Jantzen filtration. Now we

recall the definition of the Jantzen filtration in general [22].

For any admissible representation (π,X) of finite length of a reductive group

G with the maximal compact subgroup K, we examine

∑

δ∈K̂

m(δ)δ,

where m(δ) is a multiplicity of the irreducible representation δ in π|K . For every

δ ∈ K̂, we have m(δ) < ∞. Suppose that π is a representation endowed with

the G-invariant Hermitian form 〈·, ·〉 on it’s representation space X . For any

δ ∈ K̂, we fix a positive-definite Hermitian form on the space Vδ of δ. Then,

the finite dimensional vector space Xδ = HomG(Vδ ,K) is endowed with a non-

degenerate hermitian form; let (p(δ), q(δ)) denote its signature. The signature

of 〈·, ·〉 is given as a formal sum (
∑

δ∈K̂ p(δ)δ,
∑

δ∈K̂ q(δ)δ), and, for every δ ∈ K̂
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, we have m(δ) = p(δ) + q(δ). Usually we have the following situation: we have

a continuous family of the Hermitian forms (indexed by an interval) on the

compact picture X of the representation; for example, πs = νsπ1 o π2, where

π1 and π2 are irreducible and Hermitian, and s ∈ [0, 1]. Then, there exists a

family of Hermitian forms on the common compact picture X = νsπ1 o π2|K ,

induced by the intertwining operators. Vogan has shown (Theorem 3.2 and

Proposition 3.3 of [22]) that the family of the Hermitian forms does not change

its signature over the intervals where the representations πs are irreducible and

that the Jantzen filtration at the reducibility point s = s0 governs the signature

of the Hermitian forms left (s < s0) and right (s > s0) from it.

In our case, the Jantzen filtration are introduced as follows: We denote by X

a compact picture of the representation δ̂n o σ̂n. Then, we view the intertwining

operators A(s) = A(s, δ̂n ⊗ σ̂n) as the operators on the space X . They induce

Hermitian forms 〈·, ·〉s on X in the usual way, i.e.

〈f1, f2〉s =

∫

K

〈A(s)f1,s(k), f2,s(k)〉dk.

Here f1,s and f2,s denote the holomorphic sections corresponding to f1, f2 ∈ X.

For s ∈ [0, 1/2) the operators A(s) are isomorphisms, and the kernel of the

operator A(1/2) is the subspace of X formed by vectors whose holomorphic

sections for s = 1/2 form ̂L(ν1/2δn;σn). (The question of the holomorphy of

this operator will be resolved in the next proposition; for now, we assume that

it is holomorphic). The Jantzen filtration is a sequence [22] of Gm′ -invariant

spaces (where δ̂n o σ̂n is a representation of Gm′) given by

X0
1/2 = X ⊃ X1

1/2 = ̂L(ν1/2δn;σn) ⊃ X2
1/2 ⊃ · · · ⊃ {0}.

The space X i
1/2 is given as the radical of the hermitian form (·, ·)i−1

1/2 defined on

X i−1
1/2 and given by

lim
s→1/2

1

(s− 1/2)i−1
(A(s)·, ·).

Because of the result in 3.2 (for which we needed the basic assumption), the

following holds:

(12) A(−s)A(s) = (s− 1/2)h(s),

where h(s) is a holomorphic function near s = 1/2, and h(1/2) 6= 0.

First, we want to show that X2
1/2 is zero, i.e. that the hermitian form (·, ·)11/2

defined on ̂L(ν1/2δn;σn) is non-degenerate. But this follows from (12); namely,
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we can always focus our attention on a certain K-type mδVδ (so δ is an irre-

ducible representation of K on the space Vδ and mδ is the multiplicity of that

representation in X) such that mδVδ ∩ ̂L(ν1/2δn;σn) 6= {0}. Then, on this K-

type (which is a finite-dimensional subspace) we have the following expansion:

A(s) = A(1/2) + (s− 1/2)A′(1/2) + · · · .

For f ∈ mδVδ ∩ ̂L(ν1/2δn;σn) we have lims→1/2
1

s−1/2A(s)f = A′(1/2)f , so

A(−1/2)A′(1/2)f = h(1/2)f 6= 0. Then, because A′(1/2)f /∈ KerA(−1/2)

we can choose appropriate v′ ∈ ̂L(ν1/2δn;σn)|K such that (A′(1/2)f, v′) =

(f, v′)11/2 6= 0.

We denote the signature of the form (·, ·)01/2 on the quotient X0
1/2/X

1
1/2

∼=

σ̂′
1 ⊕ σ̂′

2 by (p0, q0) (this is actually a formal sum), and the signature of the

form (·, ·)11/2 on X1
1/2

∼= ̂L(ν1/2δn;σn) by (0, q1) ( ̂L(ν1/2δn;σn) is unitarizable

by Proposition 3.1). The signature of the representation νsδ̂n o σ̂n, s ∈ [0, 1/2)

is given by (p0 + q1, q0) (of [22, Theorem 3.2 and Proposition 3.3.]). We have

to prove that q0 = 0, i.e., that the form (·, ·)01/2 on σ̂′
1 ⊕ σ̂′

2 is definite.

We now employ an inductive procedure to calculate this signature. To em-

phasize the rank of the groups we are considering, we now denote A(s) =

A(s, δ̂n ⊗ σ̂n) by A(s, n).

By Lemma 3.5 the following holds:

νsδ̂n o σ̂n ↪→ νs−(n+α−3/2)ρ× νsδ̂n−1 × νs+(n+α−3/2)ρ× ν−(n+α)ρo σ̂n−1.

Let MΘ
∼= GL(k, F )×GL((2n+ 2α− 4)k, F )×GL(k, F )×GL(k, F )×Gnk+m

(so that ρ is a representation of the group GL(k, F )). Let w be an element of

the Weyl group WΘ whose action on MΘ we can describe as follows: in the

usual matrix realization of the groups Gn [19], w transforms the block-diagonal

matrix

diag(a, b, c, d, e, Jd−tJ, Jc−tJ, Jb−tJ, Ja−t)

to a matrix

diag(Jc−tJ, Jb−tJ, Ja−tJ, d, e, Jd−tJ, a, b, c).

Here J denotes the matrix which generates symmetric or skew-symmetric form

on the appropriate spaces, and ∗−t denotes an inverse of the matrix transpose.
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We examine an intertwining operator

A1(s, w) : νs−(n+α− 3
2 )ρ× νsδ̂n−1 × νs+(n+α− 3

2 )ρ× ν−(n+α)ρo σ̂n−1 →

ν−s−(n+α− 3
2 )ρ× ν−sδ̂n−1 × ν−s+(n+α− 3

2 )ρ× ν−(n+α)ρo σ̂n−1.

The integral formulas and analytic continuation imply

A1(s, w)|νs δ̂noσ̂n
= A(s, n).

Using the factorization of the intertwining operators [15] we get:

A1(s, w) = B1(s)A
′(s, n− 1)B2(s),

for the intertwining operators B1(s), A
′(s, n − 1) and B2(s). We note their

actions:

B2(s) : νs−(n+α− 3
2 )ρ× νsδ̂n−1 × νs+(n+α− 3

2 )ρ× ν−(n+α)ρo σ̂n−1 →

ν−s−(n+α+ 3
2 )ρ× νs−(n+α+ 3

2 )ρ× ν−(n+α)ρ× νsδ̂n−1 o σ̂n−1,

A′(s, n− 1) : ν−s−(n+α+ 3
2 )ρ× νs−(n+α+ 3

2 )ρ× ν−(n+α)ρ× νsδ̂n−1 o σ̂n−1 →

ν−s−(n+α+ 3
2 )ρ× νs−(n+α+ 3

2 )ρ× ν−(n+α)ρ× ν−sδ̂n−1 o σ̂n−1,

B1(s) : ν−s−(n+α+ 3
2 )ρ× νs−(n+α+ 3

2 )ρ× ν−(n+α)ρ× ν−sδ̂n−1 o σ̂n−1 →

ν−s−(n+α− 3
2 )ρ× ν−sδ̂n−1 × ν−s+(n+α− 3

2 )ρ× ν−(n+α)ρo σ̂n−1.

Let f ∈ ν1/2δ̂n o σ̂n, and f /∈ ̂L(ν1/2δn;σn). We want to calculate the

signature of the form

(13) (A1(1/2, w)f, f) = (B1(1/2)A′(1/2, n− 1)B2(1/2)f, f)

for f ∈ ν
1
2 δ̂n o σ̂n \ ̂L(ν

1
2 δn;σn). This form is not the usual G(3n+2α−1)k+m-

invariant hermitian form on the whole space of the representation νs−(n+α− 3
2 )ρ×

νsδ̂n−1 × νs+(n+α− 3
2 )ρ× ν−(n+α)ρo σ̂n−1; that from is induced using the long

intertwining operator attached to the subset Θ of the set of all the simple

roots ∆. This intertwining operator (A1(s, w)) induces K-invariant form on

νs−(n+α− 3
2 )ρ× νsδ̂n−1 × νs+(n+α− 3

2 )ρ× ν−(n+α)ρo σ̂n−1 and G(3n+2α−1)k+m-

invariant form on νsδ̂n o σ̂n. We now introduce the compact pictures of the

induced representations appearing (with the corresponding subsets Θ1 and Θ2

of simple roots): XΘ = ρ× δ̂n−1 × ρ× ρo σ̂n−1, XΘ1 = ρ× ρ× δ̂n−1× ρo σ̂n−1
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and XΘ2 = ρ × ρ × ρ × δ̂n−1 o σ̂n−1. Using the formulas for the adjoint of an

intertwining operator acting on the compact picture of the representation (e.g. ,

[1, p. 26] or [15, Proposition 2.4.1.]) we see that

B∗
1 (s1, s2, s3, s4; ρ⊗δ̂n−1⊗ρ⊗ρ⊗σ̂n−1, w2) : νs1ρ×νs2 δ̂n−1×ν

s3ρ×νs4ρoσ̂n−1

→ νs1ρ× ν−s3ρ× νs4ρ× νs2 δ̂n−1 o σ̂n−1.

Here, w2 denotes the corresponding element of the Weyl group; w2(Θ) = Θ2.

So, the equation (13) now becomes

(14) (A1(1/2, w)f, f) = (A′(1/2, n− 1)B2(1/2)f, B∗
1(1/2)f).

We want to relate the form from (14) to the form

(A′(1/2, n− 1)B2(1/2)f, B2(1/2)f),

because we want to use the induction hypothesis. Using the intertwining oper-

ator

A(s1, s2, s3, s4; ρ⊗ δ̂n−1 ⊗ ρ⊗ ρ⊗ σ̂n−1, w1) :

νs1ρ× νs2 δ̂n−1 × νs3ρ⊗ νs4ρo σ̂n−1 →

ν−s3ρ× νs1ρ× νs4ρ× νs2 δ̂n−1 o σ̂n−1,

where also w1(Θ) = Θ2, we can write

B2(s) = A(s− (n+ α− 3/2), s, s+ (n+ α− 3/2),−(n+ α);

ρ⊗ δ̂n−1 ⊗ ρ⊗ ρ⊗ σ̂n−1, w1).

By comparing the actions of the intertwining operators B∗
1(s) and B2(s) on

the representation

νs−(n+α−3/2)ρ× νsδ̂n−1 × νs+(n+α−3/2)ρ× ν−(n+α)ρo σ̂n−1,

we see that

(15) B∗
1(s)f = c(s)D(s)B2(s)f,

where the operator D(s) is the intertwining operator A(−s − (n + α − 3/2),

s−(n+α−3/2),−(n+α), s; ρ⊗ρ⊗ρ⊗δ̂n−1⊗σ̂n−1, w2w
−1
1 ), and c(s) is a function,

independent of f , which occurs as a consequence of the fact that our operators

are unnormalized. The operator D(s) is induced from the intertwining operator

acting on GL(2k, F ) which intertwines ν−s−(n+α−3/2)ρ × νs−(n+α−3/2)ρ and
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νs−(n+α−3/2)ρ×ν−s−(n+α−3/2)ρ, or, essentially ν−sρ×νsρ and νsρ×ν−sρ, and,

as such, is holomorphic for s = ±1/2. Denote by Θ′
2 a subset of the set of simple

roots (Θ′
2 ⊃ Θ2) such that MΘ′

2

∼= GL(2k, F ) × GL(k, F ) × G(3n+2α−4)k+m.

Then, it is well-known that

iG(3n+2α−1)k+m,MΘ′

2
iMΘ′

2
,MΘ2

× (ν−s−(n+α−3/2)ρ⊗ νs−(n+α−3/2)ρ⊗ ν−(n+α)ρ⊗ νsδ̂n−1 ⊗ σ̂n−1) ∼=

iG(3n+2α−1)k+m,MΘ2

× (ν−s−(n+α−3/2)ρ⊗ νs−(n+α−3/2)ρ⊗ ν−(n+α)ρ⊗ νsδ̂n−1 ⊗ σ̂n−1),

the isomorphisms being as follows:

F ′ 7→ F,

F ′(g)(m) = δ
− 1

2

PΘ′

2

(m)F (mg),

F 7→ F ′,

F (g) = F ′(g)(1),

for g ∈ G(3n+2α−1)k+m, m ∈ MΘ′

2
. We denote by F = B2(1/2)f , where

f ∈ σ̂′
1 ⊕ σ̂′

2. Then, the following holds: for k ∈ K

((A′(1/2, n− 1)F )(k), c(1/2)(D(1/2)F )(k)) =(16)

(A′′(1/2, n− 1)(F ′(k))(1), c(1/2)D′′(1/2)(F ′(k))(1)).(17)

Here, A′′(1
2 , n − 1) = id ⊗ id ⊗ A(1

2 , n − 1) is an intertwining operator acting

on the space of the representation iMΘ′

2
,MΘ2

(ν−s−(n+α−3/2)ρ⊗νs−(n+α−3/2)ρ⊗

ν−(n+α)ρ⊗ν1/2δ̂n−1⊗ σ̂n−1); so the operator A(1/2, n−1) acts on the represen-

tation space of the representation ν1/2δ̂n−1 o σ̂n−1 (as the notation suggests).

The operator c(1/2)D′′(1/2) acts analogously, namely, the operator D′′(1/2)

acts on the space of the representation ν−s−(n+α−3/2)ρ× νs−(n+α−3/2)ρ.

Let F (k) = v
(k)
1 ⊗ v

(k)
2 ⊗ v

(k)
3 ⊗ v

(k)
4 ⊗ v

(k)
5 , so v

(k)
1 ∈ ν−1/2−(n+α−3/2)ρ, v

(k)
2 ∈

ν1/2−(n+α−3/2)ρ, v
(k)
3 ∈ ν−(n+α)ρ, v

(k)
4 ∈ ν1/2δ̂n−1, v

(k)
5 ∈ σ̂n−1 (actually,

we have a sum of the expressions of this type). The dependence on k ∈ K

is emphasized by the superscripts. At this point, we abuse the notation by

identifying the representation in question with its representation space. Then,

for m1 ∈ GL(2k, F ), m2 ∈ GL(k, F ), m3 ∈ G(3n+2α−4)k+m, we have

F ′(k)(m) = F ′(k)(m1,m2,m3) = f
(k)
1 (m1) ⊗ (ν−(n+α)ρ)(m2)v

(k)
3 ⊗ g

(k)
4 (m3),
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where f
(k)
1 and g

(k)
4 are the functions in the corresponding spaces of the induced

representations with f
(k)
1 (1) = v

(k)
1 ⊗ v

(k)
2 and g

(k)
4 (1) = v

(k)
4 ⊗ v

(k)
5 . Taking this

into account, the expression given by (16) we now denote by L(k) and it now

reads:

L(k) = (f
(k)
1 (1), c(1/2)D′′(1/2)f

(k)
1 (1))(v

(k)
3 , v

(k)
3 )(A(1/2, n− 1)g

(k)
4 (1), g

(k)
4 (1)).

Let Kmax,1 be a maximal compact subgroup of GL(2k, F ) (considered as a

subgroup ofMΘ′

2
), Kmax,2 a maximal compact subgroup in G(3n+2α−4)k+m. We

consider both of them as subgroups of K. We want to calculate the expression

L =
∫

K L(k)dk, which gives the form we are interested in. Fix k′ ∈ Kmax,1.

Now, we change the integration variable in the previous integral by introducing

k1 = k′k. Since k′ ∈ GL(2k, F ) × {e} × {e} ≤ MΘ′

2
, (v

(k′−1k1)
3 , v

(k′−1k1)
3 ) =

(v
(k1)
3 , v

(k1)
3 ) and g

(k′−1k1)
4 (1) = g

(k1)
4 (1). Since L does not depend on k′, when

we integrate L overKmax,1, and then change the order of the integration against

K and Kmax,1, we obtain

meas(Kmax,1)L =

∫

K

(v
(k1)
3 , v

(k1)
3 )(A(

1

2
, n− 1)g

(k1)
4 (1), g

(k1)
4 (1))

×

∫

Kmax,1

c(
1

2
)(D′′(

1

2
)f

(k1)
1 (k′), f

(k1)
1 (k′))dk′dk1.

We denote A(k1) =
∫

Kmax,1
c(1

2 )(D′′(1
2 )f

(k1)
1 (k′), f

(k1)
1 (k′))dk′. Note that

A(k1) > 0, for any k1 ∈ K. This is just a consequence of the fact that

c(1
2 )D(1

2 )(σ̂′
1 ⊕ σ̂′

2) 6= 0. We now have

meas(Kmax,1)L =

∫

K

(v
(k1)
3 , v

(k1)
3 )(A(

1

2
, n− 1)g

(k1)
4 (1), g

(k1)
4 (1))A(k1)dk1.

Now, if we change the variable of the integration again, now by fixing k′′ ∈

{e} × {e} × Kmax,2 (so k2 = k′′k1), and then integrate against Kmax,2, we

obtain

meas(Kmax,2)meas(Kmax,1)L =

∫

K

(v
(k′′−1k2)
3 , v

)(k′′−1k2)
3 )A(k′′−1k2)

×

∫

Kmax,2

(A(
1

2
, n− 1)g

(k2)
4 (k′′−1), g

(k2)
4 (k′′−1))dk′′dk2.

We note that (v
(k′′−1k2)
3 , v

(k′′−1k2)
3 ) = (v

(k2)
3 , v

(k2)
3 ) is a positive-definite,

K ∩GL(k, F )-invariant form on the space of the representation ν−(n+α)ρ.
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We denote by C(k2) =
∫

Kmax,2
(A(1

2 , n−1)g
(k2)
4 (k′′−1), g

(k2)
4 (k′′−1))dk′′. Note

that C(k2) > 0, by the induction hypothesis.

Namely, by the induction hypothesis, the representation σ̂n−1 is unitarizable

and for n − 1 > 1 the structure of the representation ν
1
2 δ̂n−1 o σ̂n−1 is given

by Proposition 3.1. Since the kernel of the operator A(1/2, n− 1) is an unita-

rizable representation ̂L(ν
1
2 δn−1;σn−1), in the corresponding Jantzen filtration

(the same structure as for the index n) it has a signature (0, q′1) and the quo-

tient (the sum of the Aubert-duals of the square-integrable representations) has

a signature (p′0, q
′
0). But for s < 1/2 the representation νsδ̂n−1 o σ̂n−1 is uni-

tarizable, and on the other hand, it has a signature given by (p′0 + q′1, q
′
0) [22].

We conclude that q′0 = 0, so the operator A(1/2, n− 1) induces a definite form

on the quotient ν1/2δ̂n−1 o σ̂n−1/ ̂L(ν1/2δn−1;σn−1).

We then have

meas(Kmax,2)meas(Kmax,1)L =

∫

K

(v
(k2)
3 , v

(k2)
3 )A(k2)C(k2)dk2,

which is then, obviously, positive.

The (semi)-definiteness of the operator A(1/2, n−1) also follows for n−1 = 1

if α > 1/2 by the same proposition. So, we only have to analyze the case

n − 1 = 1 when α = 1/2, the structure of the representation ν1/2δ̂n−1 o σ̂n−1

and the definiteness of the operator A(1/2, n−1) in that case. We shall do that

in the following lemma.

Lemma 3.7: Let α = 1/2. Then, the representations ̂L(ν1/2ρ;σ1) and σ̂′
1 are

unitarizable, and the intertwining operator

A(1/2, 1) : ν1/2ρo σ̂1 → ν−1/2ρo σ̂1

is holomorphic, positive-semidefinite on the compact picture of the representa-

tion ν1/2ρo σ̂1. The representation σ̂1 is unitarizable.

Proof. We assume that ρ is a representation of GL(k, F ) and σ1,cusp = σ′ is

a representation of Gm. By the previous considerations, we know that, in the

Grothendieck group, we have

ν1/2ρo σ̂1 = ̂L(ν1/2ρ;σ1) + σ̂′
1.

By the equalities in the discussion following the Proposition 3.1, the represen-

tation σ̂′
1 is unitarizable, because it appears at the end of the complementary

series of certain unitarizable representation.
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It is not difficult to see that σ̂′
1 = L(ρν3/2, ρν1/2, ρν1/2;σ′). The representa-

tion δ([ν−1/2ρ, ν1/2ρ]) o σ′ reduces into a sum of two non-equivalent, tempered

representations, say τ1 and τ2. When examining Jacquet modules, we see that

for one of these representations, rGL(2k,F )×Gm
-module is δ([ν−1/2ρ, ν1/2ρ])⊗σ′,

and for the other is δ([ν−1/2ρ, ν1/2ρ])⊗σ′+ν1/2ρ×ν1/2ρ. We call the first one τ1

and the second one τ2. When analyzing the representation ν1/2ρ×ν1/2ρoσ′, we

see that then τ1 ≤ ν1/2ρo L(ν1/2ρ;σ′). Now, from, for example, [20, Theorem

8.1(ii)], it follows that ̂L(ν1/2ρ;σ1) = L(ν3/2ρ; τ1). We analyze the represen-

tations νsρ o τ1, s ≥ 0. We want to prove that s = 3/2 is the first positive

reducibility point for this representation; it is not reducible for s = 0. Then, it

would follow that the representation L(ν3/2ρ; τ1) is unitarizable.

In order to do that, we shall prove that the representation ν1/2ρ o τ1 is

irreducible. The representation τ1 is basic [14] and we can apply Lemma 6.1

and Lemma 6.2 of [14], and, in this situation, these lemmas can be stated as

follows: Exactly one of the representations ν1/2ρ o τ1 and ν1/2ρ o τ2 reduces;

call it τ . Then, ν1/2ρo τ = T1 +L(ν1/2ρ; τ), where T1 = δ(ν−1/2ρ, ν1/2ρ) o σ0

(which is irreducible). We will show that τ = τ2. Namely, if we assume that

T1 ≤ ν1/2ρo τ1, then also the corresponding relation must hold for the Jacquet

modules. Using the formula (1) we obtain

µ∗(T1) = µ∗(δ([ν−1/2ρ, ν1/2ρ]) o σ0) = M(δ([ν−1/2ρ, ν1/2ρ)]) o µ∗(σ0)

≤M(ν1/2ρ) o µ∗(τ1).

When we compare rGL(3k,F )×Gm
-Jacquet modules, we see that the subquotient

ν1/2ρ× ν1/2ρ× ν1/2ρ⊗ σ′ appears on the left-hand side, and since

rGL(3k,F )×Gm
(ν1/2ρo τ1)

= ν−1/2ρ× δ([ν−1/2ρ, ν1/2ρ]) ⊗ σ′ + ν1/2ρ× δ([ν−1/2ρ, ν1/2ρ]) ⊗ σ′,

this cannot be true.

Now, again we calculate the Plancherel measure µ(s, νsρo σ̂1). In this case,

we can explicitly (without involving any conjectures) calculate the pole of the

Plancherel measure: namely, we can use the result of Heirmann which states

that when inducing from the cuspidal representation, and then considering the

Plancherel measure attached to the long intertwining operator, if we have a

discrete series subquotient, the pole of the Plancherel measure equals the co-

rank of the parabolic subgroup involved. Again, we get that the Plancherel
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measure has a simple pole for s = 1/2. Since the representation ν1/2ρ o σ̂1

has two unitarizable subquotients, a unique quotient, (namely, σ̂′
1) and a unique

subrepresentation, we can use the Jantzen filtration in an analogous, but

simpler way as in Proposition 3.6, to prove that the representation σ̂1 is

unitarizable.

To conclude the proof, we shall have to address the holomorphy questions.

Again, we prove the holomorphy of the intertwining operators in a bit more

general context (than the Steinberg case).

Proposition 3.8: Let σ1 be a strongly positive discrete series representation

of Gm, let ρ be an irreducible, self-dual representation of GL(k, F ) and let

a− > 2 be a positive integer such that a− − 2, a−, a− + 4 /∈ Jordρ(σ1) and

a−+2 ∈ Jordρ(σ1). Let δ̂ = ̂δ([ν−(a−/2−1)ρ, νa−/2−1ρ]). Let σ̂2 be a unique sub-

representation of the representation ν−
a
−

+3

2 ρo σ̂1 (Lemma 3.5). If we assume

that the (standard) intertwining operator

A(s, δ̂ ⊗ σ̂1) : νsδ̂ o σ̂1 → ν−sδ̂ o σ̂1

is holomorphic for s = 1/2, then the intertwining operator

A(s, ̂δ[ν−a−/2ρ, νa−/2ρ] ⊗ σ̂2, w) : νs ̂δ[ν−a−/2ρ, νa−/2ρ] o σ̂2 →

ν−s ̂δ[ν−a−/2ρ, νa−/2ρ] o σ̂2

is holomorphic for s = 1/2. An element w of the Weyl group is the one defined

in the Proposition 3.6.

Proof. Using the factorization of the intertwining operators [15] we get:

A
(
s−

a−
2
, s, s+

a−
2
,−

a− + 3

2
; ρ⊗ δ̂ ⊗ ρ⊗ ρ, σ̂1;w

)
= B1(s)A

′′(s)B2(s),

for the intertwining operators B1(s), A
′′(s) and B2(s) (essentially, the situation

we had in the Proposition 3.6). Their actions are described as follows:

B2(s) : νs−
a
−

2 ρ× νsδ̂ × νs+
a
−

2 ρ× ν−
a
−

+3

2 ρo σ̂1 →

ν−s−
a
−

2 ρ× νs−
a
−

2 ρ× ν−
a
−

+3

2 ρ× νsδ̂ o σ̂1,
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A′′(s) : ν−s−
a
−

2 ρ× νs−
a
−

2 ρ× ν−
a
−

+3

2 ρ× νsδ̂ o σ̂1 →

ν−s−
a
−

2 ρ× νs−
a
−

2 ρ× ν−
a
−

+3

2 ρ× ν−sδ̂ o σ̂1

and

B1(s) : ν−s−
a
−

2 ρ× νs−
a
−

2 ρ× ν−
a
−

+3

2 ρ× ν−sδ̂ o σ̂1 →

ν−s−
a
−

2 ρ× ν−sδ̂ × ν−s+
a
−

2 ρ× ν−
a
−

+3

2 ρo σ̂1.

When we factorize the operator B2(s) into the generalized rank one intertwining

operators, it follows that we have to check the holomorphy of the intertwining

operators

Ĉ2(s) : νsδ̂ × ν−s−
a
−

2 ρ→ ν−s−
a
−

2 ρ× νsδ̂,

D̂2(s) : νsδ̂ × ν−
a
−

+3

2 ρ→ ν−
a
−

+3

2 ρ× νsδ̂

and

Ê2(s) : νs+
a
−

2 ρo σ̂1 →: ν−(s+
a
−

2 )ρo σ̂1

near s = 1/2.

To prove the holomorphy of the operator B1(s) we have to check the holo-

morphy of the operators

Ĉ1(s) : ν−
a
−

+3

2 ρ× ν−sδ̂ → ν−sδ̂ × ν−
a
−

+3

2 ρ,

D̂1(s) : νs−
a
−

2 ρ× ν−sδ̂ → ν−sδ̂ × νs−
a
−

2 ρ

and

Ê1(s) : νs−
a
−

2 ρo σ̂1 → ν−(s−
a
−

2 )ρo σ̂1

near s = 1/2.

We consider the intertwining operator Ĉ2(s) near s = 1/2. We can embed

ν1/2δ̂ ↪→ ν−(a−/2−3/2)ρ × · · · × νa−/2−1/2ρ and when we factorize an appropri-

ate intertwining operator on this larger space, we get holomorphy. The same

procedure works for D̂2(1/2) and Ĉ1(1/2). For D̂1(1/2) we have to proceed in

a slightly different manner, since ν1/2−a−/2ρ appears in the cuspidal support of
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̂δ([ν−(a−/2−1/2)ρ, νa−/2−3/2ρ]). We can embed

ν
1
2−

a
−

2 ρ×
̂

δ([ν−(
a
−

2 − 1
2 )ρ, ν

a
−

2 − 3
2 ρ]) ↪→

ν
1
2−

a
−

2 ρ×
̂

δ([ν
1
2−

a
−

2 ρ, ν
3
2−

a
−

2 ρ]) ×
̂

δ([ν
5
2−

a
−

2 ρ, ν
a
−

2 − 3
2 ρ]).

So, we have to prove the holomorphy of the operator

ν
1
2−

a
−

2 ρ×
̂

δ([ν
1
2−

a
−

2 ρ, ν
3
2−

a
−

2 ρ]) →
̂

δ([ν
1
2−

a
−

2 ρ, ν
3
2−

a
−

2 ρ]) × ν
1
2−

a
−

2 ρ

The operator

ν
1
2−

a
−

2 ρ× δ([ν
1
2−

a
−

2 ρ, ν
3
2−

a
−

2 ρ]) → δ([ν
1
2−

a
−

2 ρ, ν
3
2−

a
−

2 ρ]) × ν
1
2−

a
−

2 ρ

has a simple pole (for s = 1/2). Indeed, this follows from the calculation of the

Plancherel measure and the fact that the operator

δ([ν
1
2−

a
−

2 ρ, ν
3
2−

a
−

2 ρ]) × ν
1
2−

a
−

2 ρ→ ν
1
2−

a
−

2 ρ× δ([ν
1
2−

a
−

2 ρ, ν
3
2−

a
−

2 ρ])

is a holomorphic isomorphism on the irreducible representation space. Since

on the Aubert-dual side we have the same Plancherel measure and we have a

pole of the appropriate intertwining operator acting (essentially) on the space

ν−1/2ρ× ν1/2ρ× ν−1/2ρ, we get the holomorphy of the operator in question.

The representations νa−/2±1/2ρ o σ1 are irreducible [12]. When we calcu-

late the corresponding Plancherel measures (like in Lemma 3.2), we obtain the

holomorphy of the operator Ê1(1/2). The operator Ê2(s) has a simple pole for

s = 1/2. On the other hand, the following holds:

ν−
a
−

+1

2 ρo σ̂2 ↪→ L(ν−
a
−

+1

2 ρ, ν−
a
−

+3

2 ρ) o σ̂1.

We will denote by T (s) an operator which occurs in the factorization of the op-

erator B2(s) and which acts after the operator induced from Ê2(s), i.e. B2(s) =

T (s)Ê2(s). From the previous relation follows that T (s) has the following prop-

erty: the representation ̂δ[ν−a−/2ρ, νa−/2ρ]oσ̂2 is in its kernel (for s = 1/2). So,

for f in the compact picture of the representation ̂δ[ν−a−/2ρ, νa−/2ρ]oσ̂2, we ob-

serve that the function T (s)Ê2(s)fs is holomorphic near s = 1/2, so B2(s), when

restricted to the representation space of the representation ̂δ[ν−a−/2ρ, νa−/2ρ]o

σ̂2, is holomorphic.

By Proposition 3.8 we have reduced the question of the holomorphy of the in-

tertwining operators appearing in the generalized Steinberg case to the following

situation:
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Lemma 3.9: Let ρ be an irreducible, selfcontragredient, supercuspidal repre-

sentation of the group GL(k, F ) and let σ′ be a similar representation of Gm.

Assume that the representation ναρoσ′ reduces and α > 0. Then, the operator

A(
1

2
, δ̂1 ⊗ σ̂1) : ̂δ([ν−(α−1)ρ, ναρ]) o σ̂1 → ̂δ([ν−αρ, ν(α−1)ρ]) o σ̂1

is holomorphic.

Proof. We embed

̂δ([ν−(α−1)ρ, ναρ]) o σ̂1 ↪→ ̂δ([ν−(α−1)ρ, ναρ]) × ν−(α+1)ρo σ̂0.

We have already covered the case α = 1/2, so, we assume α ≥ 1. When

we factorize the appropriate intertwining operator acting on the representation

above (on the right-hand side), we see that the poles of the generalized rank

one case intertwining operators cancel with the kernels of the other operators

appearing (similarly as in the Proposition 3.8). Namely,

̂δ([ν−(α−1)ρ, ναρ]) o σ̂1 = ̂L(δ([ν−(α−1)ρ, ναρ]);σ1) + σ̂′
1 + σ̂′

2,

where σ′
1 and σ′

2 are square -integrable representations. On the other hand, the

kernel of the (holomorphic) intertwining operator

ν−(α+1)ρ× ̂δ([ν−αρ, να−1ρ]) o σ̂0 → ̂δ([ν−αρ, να−1ρ]) × ν−(α+1)ρo σ̂0

is the representation ̂δ([ν−(α+1)ρ, να−1ρ]) o σ̂0 which reduces according to [12,

Theorem 4.1]. On the other hand, since we know that the representation

σ̂0 is unitarizable, there is a positive definite hermitian form on the space

νs ̂δ([ν−(α−1/2)ρ, να−1/2ρ]) o σ̂0 for s ∈ [0, 1/2) and by examining the Jantzen

filtration we see that the pole of the intertwining operator is of order one.

Corollary 3.10: Let ρ be an irreducible, selfcontragredient, supercuspidal

representation of the group GL(k, F ) and let σ′ be a similar representation of

Gm. Assume that the representation ναρ o σ′ reduces and α > 0. Then, for

each n ≥ 1, the Aubert dual of the generalized Steinberg representation σn, i.e.,

the representation L(νn+αρ, νn−1+αρ, . . . , ναρ;σ′), is unitarizable.

Proof. By our inductive procedure, the proof follows as soon as the basis for the

induction is proved. For α > 1/2 it is enough to consider the representations

σ̂−1 = σ̂′ = σ′ and σ̂0 = L(ν1/2ρ;σ′) which are trivially unitarizable; for α =

1/2 we proved the unitarizability of σ̂1 in Lemma 3.7.
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4. Strongly positive discrete series in D(ρ, σ′)

In this section we deal with the case of the strongly positive discrete series

belonging to the set D(ρ, σ′) [7], i.e., those whose partial supercuspidal support

is a supercuspidal representation σ′, and the rest of the supercuspidal support

is formed from the twists of the representation ρ. Of course, we continue to

assume ρ ∼= ρ̃.

If the representation ρ o σ′ reduces, then the only strongly positive discrete

series in D(ρ, σ′) is σ′.

Assume that for some α > 0 (we assume that α ∈ 1
2Z) the representation

ρνα o σ′ reduces. Then

Jordρ(σ
′) =





{1, 3, 5, . . . , 2α− 1}, if α ∈ Z,

{2, 4, . . . , 2α− 1}, if α ∈ 1
2Z \ Z, α 6= 1

2 ,

∅, if α = 1/2.

Then, for strongly positive σ ∈ D(ρ, σ′) and σ 6= σ′, the Jordan block is

Jordρ(σ) =





{a1, a2, . . . , aα}, if α ∈ Z,

{a1, a2, . . . , aα− 1
2
}, if α ∈ 1

2Z \ Z, ε(a1) = −1,

{a1, a2, . . . , aα+ 1
2
}, if α ∈ 1

2Z \ Z, ε(a1) = 1.

We will now prove the unitarizability of the representations σ̂, for which α ∈ Z

or ε(a1) = −1.

We will do that using the two-fold inductive procedure, quite analogous to

the one introduced in the generalized Steinberg representations case.

The first induction will be over the place of an element in the Jordan block;

the second will be over the value of that element. More precisely, the basis

for the first induction is the case of the generalized Steinberg representation

covered in the previous section; in this case Jord = {2, 4, . . . , 2α − 3, aα−1/2}

(or Jord = {1, 3, . . . , 2α− 3, aα}; we have actually completely covered the case

of α = 1/2 by the generalized Steinberg representations, so we assume α ≥ 1).

So, the first induction starts from the largest element in the Jordan block

(so for this element we put i = 1). By the inductive hypothesis (of the first

induction) we assume that the Aubert dual of the representation with Jordan

block

Jord(σi) = {2, 4, . . . , 2j, aj+1, . . . , aα− 1
2
}
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or

Jord(σi) = {1, 3, . . . , 2j − 1, aj+1, . . . , aα}

is unitarizable. Here, of course, α − 1/2 − i = j (or α − j = i). We want to

prove that the Aubert dual of the representation whose Jordan block equals to

Jord(σi+1) = {2, 4, . . . , 2j − 2, aj, aj+1, . . . , aα− 1
2
}

or

Jord(σi+1) = {1, 3, . . . , 2j − 3, aj, aj+1, . . . , aα}

is unitarizable. We continue this induction over the i’s until we get such j for

which aj = 2j (or aj = 2j−1). So, we put aj = 2j+2ni+1 (or aj = 2j−1+2ni+1)

only now we use the induction over ni+1 (the second induction), and accordingly,

introduce representations σi+1,ni+1 (for which aj = 2j + 2ni+1 in the Jordan

block). For ni+1 = 0 we have aj = 2j (or aj = 2j − 1) and, we obtain the

representation σi from the inductive hypothesis (of the first induction). Of

course, ni+1 is such that 2j + 2ni+1 < aj+1 (or 2j − 1 + 2ni+1 < aj+1).

We examine the situation for ni+1 = 1. Using the results from [12], we

immediately see that the first point of reducibility of the representation νsρoσi

is s = j + 1/2 (or s = j), and σi+1,1 ↪→ νj+1/2ρ o σi (or σi+1,1 ↪→ νjρ o σi).

Actually, we can take s = α − i in both cases. From this immediately follows

that the representation σ̂i+1,1 is unitarizable.

Now we proceed in a fashion which is quite analogous to the generalized

Steinberg case from the previous section.

For ni+1 ≥ 2, we examine the following representations:

ν
1
2 δ([ν−(ni+1+α−(i+1)− 3

2 )ρ, ν(ni+1+α−(i+1)− 3
2 )ρ]) o σi+1,ni+1 ,

νδ([ν−(ni+1+α−(i+1)−1)ρ, ν(ni+1+α−(i+1)−1)ρ]) o σi+1,ni+1−1,

ν
1
2 δ([ν−(ni+1+α−(i+1)− 1

2 )ρ, ν(ni+1+α−(i+1)− 1
2 )ρ]) o σi+1,ni+1−2.

We get

ν
1
2 δ([ν−(ni+1+α−(i+1)− 3

2 )ρ, ν(ni+1+α−(i+1)− 3
2 )ρ]) o σi+1,ni+1 =

L(δ([ν−(ni+1+α−(i+1)−2)ρ, ν(ni+1+α−(i+1)−1)ρ]);σi+1,ni+1 ) + σ′
1 + σ′

2,
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δ([ν−(ni+1+α−(i+1)−2)ρ, νni+1+α−(i+1)ρ]) o σi+1,ni+1−1 =

σ′′
1 + σ′′

2 + L(δ([ν−(ni+1+α−(i+1)−2)ρ, νni+1+α−(i+1)ρ]);σi+1,ni+1−1)

+ L(δ([ν−(ni+1+α−(i+1)−2)ρ, ν(ni+1+α−(i+1)−1)ρ]);σi+1,ni+1)

+ L(δ([ν−(ni+1+α−(i+1)−1)ρ, ν(ni+1+α−(i+1))ρ]);σi+1,ni+1−2),

δ([ν−(ni+1+α−(i+1)−1)ρ, νni+1+α−(i+1)ρ]) o σi+1,ni+1−2 =

L(δ([ν−(ni+1+α−(i+1)−1)ρ, νni+1+α−(i+1)ρ]);σi+1,ni+1−2) + σ′′′
1 + σ′′′

2 .

The square integrable representations σ′
1 and σ′

2 appear also as the subquotients

in the second and the third induced representation above, so we may take σ′
1 =

σ′′
1 and σ′

2 = σ′′′
2 ; then σ′′

2 = σ′′′
1 . We will denote a discrete series representation

of the general linear group appearing in the first induced representation by

δi+1,ni+1 .

We can now state the following

Proposition 4.1: Assume that, for ni+1 ≥ 2, the representations ̂σi+1,ni+1−1

and ̂σi+1,ni+1−2 are unitarizable. Then the representation ̂σi+1,ni+1 is unitariz-

able.

Proof. By the considerations in this section, assuming the unitarizability of the

representations ̂σi+1,ni+1−1 and ̂σi+1,ni+1−2, all the irreducible subquotients of

the representation ν1/2 ̂δi+1,ni+1 oσi+1,ni+1 are unitarizable. From the fact that

σi+1,ni+1 ↪→ ρνni+1+α−(i+1) o σi+1,ni+1−1

and from Lemma 3.5, we see that the following holds

̂σi+1,ni+1 ↪→ ρν−(ni+1+α−(i+1)) o ̂σi+1,ni+1−1.

From this it follows that

(18) νs ̂δi+1,ni+1 o σi+1,ni+1 ↪→ νs−(ni+1+α−(i+1)−3/2)ρ× νs ̂δi+1,ni+1−1

× νs+(ni+1+α−(i+1)−3/2)ρ× ν−(ni+1+α−(i+1))ρo ̂σi+1,ni+1−1.

Now, we again examine the corresponding intertwining operator

(19) A(s, i+ 1, ni+1) : νs ̂δi+1,ni+1 o σi+1,ni+1 → ν−s ̂δi+1,ni+1 o σi+1,ni+1
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by embedding the representation on the left-hand side of the previous expression

as in (18), and analyzing the form induced by the appropriate intertwining

operator on νs−(ni+1+α−(i+1)−3/2)ρ× νs ̂δi+1,ni+1−1 × νs+(ni+1+α−(i+1)−3/2)ρ×

ν−(ni+1+α−(i+1))ρo ̂σi+1,ni+1−1.

We can now completely follow the proof of Proposition 3.6 while proving that

the form on ν1/2 ̂δi+1,ni+1 o σi+1,ni+1 induced by the operator A(1
2 , i+ 1, ni+1),

is of the right signature. We use Lemmas 3.2, 3.3 and Proposition 3.8.

We now settle the case α ∈ 1
2Z \ Z, α 6= 1/2 and ε(a1) = 1.

We start with the following situation:

Jord(σ1) = {2, 4, . . . , 2α− 1, aα+1/2}.

We want to prove that σ̂1 is unitarizable. So, again, we put aα+1/2 = 2α+ 1 +

2n1. For n1 = 0 we get the representation σ1,0 which is a unique subrepresen-

tation of the induced representation

ν1/2ρ× ν3/2ρ× · · · να−1ρ× ναρo σ′.

Lemma 4.2: The representation σ̂1,0 is unitarizable.

Proof. The representation σ̂1,0 is a unique quotient of the representation ν1/2ρ×

ν3/2ρ × · · · να−1ρ × ναρ o σ′. The representation σ̂1,0 is a unique subquo-

tient of ν1/2ρ× ν3/2ρ× · · · να−1ρ× ναρo σ′ whose rGL(k,F )α+1/2×Gm
–Jacquet

module contains ν−1/2ρ⊗ ν−3/2ρ⊗ · · · ν−(α−1)ρ ⊗ ν−αρ ⊗ σ′ as a subquotient

([3], Lemma 4.1). We see that the representation L(δ([ν1/2ρ, ναρ]);σ′) satis-

fies the required condition, so σ̂1,0 = L(δ([ν1/2ρ, ναρ]);σ′). We examine the

representation νsδ([ν−
α−1/2

2 ρ, . . . , ν
α−1/2

2 ρ]) o σ′, s ≥ 0. Examining the cases
α−1/2

2 ∈ Z and α−1/2
2 /∈ Z separately, we conclude that, in both of these cases,

the first reducibility point is s = α+1/2
2 . But ν

α+1/2
2 δ([ν−

α−1/2
2 ρ, ν

α−1/2
2 ρ]) o

σ′ = δ([ν1/2ρ, ναρ])oσ′, so the representation L(δ([ν1/2ρ, ναρ]);σ′) is unitariz-

able.

Lemma 4.3: The representation σ̂1,1 is unitarizable.

Proof. Let σ′
1 be a strongly positive discrete series representation which belongs

to D(ρ, σ′) and such that Jord(σ′
1) = {4, 6, . . .2α−1, 2α+3}.We also note that,

necessarily, εσ′

1
(4) = −1. We note that ν1/2ρo σ′

1 = L(ν1/2ρ;σ1) + σ1,1. Since

we have already proved that the representations such as σ̂′
1 are unitarizable, it

follows that σ̂1,1 is unitarizable.
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We use the same procedure to prove the unitarizability of the representations

σ1,n1 in this setting, as we did in the generalized Steinberg case; we just have to

alter a bit the discrete series representations of general linear groups appearing

in the induced representations we introduce.

Proposition 4.4: Assume n1 ≥ 2. Then, if we assume the unitarizability of

the representations σ̂1,n1−1 and σ̂1,n1−2, all the irreducible subquotients of the

representation

ν
1
2 δ([ν−(n1+α−3/2)ρ, . . . νn1+α−3/2ρ]) o σ̂1,n1

are unitarizable.

Proof. We compare the composition series of the representations

ν
1
2 δ([ν−(n1+α− 3

2 )ρ, . . . νn1+α− 3
2 ρ]) o σ̂1,n1 ,

νδ([ν−(n1+α−1)ρ, . . . νn1+α−1ρ]) o σ̂1,n1−1,

ν
1
2 δ([ν−(n1+α− 1

2 )ρ, . . . νn1+α− 1
2 ρ]) o σ̂1,n1−2.

We now treat the general case of the strongly positive discrete series of this

kind. We proceed with the same kind of the two-fold induction procedure. We

want to show that the Aubert dual of the discrete series with the Jordan block

Jord = {a1, a2, . . . , aα+1/2}

is unitarizable. Assume that this is true for a square-integrable representation

σi with the Jordan block

Jord(σi) = {2, 4, . . . , 2j, aj+1, . . . aα+1/2}.

In the expression above i satisfies α + 1/2 − i = j. For i = 1 we have already

proved the statement. Let σi+1,ni+1 be a representation with the Jordan block

Jord(σi+1,ni+1) = {2, 4, . . . , 2j + 2ni+1, aj+1, . . . aα+1/2}.

For ni+1 = 0 we get representation σi, so, in this case, ̂σi+1,ni+1 is unitarizable

by the inductive hypothesis. For ni+1 = 1 we get unitarizability similarly as in

the previous Lemma.

Lemma 4.5: The representation σ̂i+1,1 is unitarizable.

Proof. Let σ′
1 be a strongly positive discrete series in D(ρ, σ′) such that

Jord(σ′
1) = {4, . . . , 2j + 2, aj+1, . . . , aα+1/2};
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obviously ε(min(Jord(σ′
1)) = −1. Observe that

ν1/2ρo σ′
1 = L(ν1/2ρ;σ′

1) + σi+1,1.

Since s = 1/2 is the first point of reducibility of the representation νsρ o σ̂′
1,

the claim follows.

We continue in the same manner as with the strongly positive discrete series

representations with |Jord| = α−1/2; we just have to adjust essentially square-

integrable representations by which we form induced representations.

For ni+1 ≥ 2, we analyze the following representations:

ν
1
2 δ([ν−(ni+1+α−(i+1)− 1

2 )ρ, ν(ni+1+α−(i+1)− 1
2 )ρ]) o σi+1,ni+1 ,

νδ([ν−(ni+1+α−(i+1))ρ, ν(ni+1+α−(i+1))ρ]) o σi+1,ni+1−1,

ν
1
2 δ([ν−(ni+1+α−(i+1)+ 1

2 )ρ, ν(ni+1+α−(i+1)+ 1
2 )ρ]) o σi+1,ni+1−2.

Proposition 4.6: Assume that, for ni+1 ≥ 2, the representations ̂σi+1,ni+1−1

and ̂σi+1,ni+1−2 are unitarizable. Then the representation ̂σi+1,ni+1 is unitariz-

able.

Proof. We employ the same procedures as before.

5. Strongly positive discrete series in general

Let σ be a strongly positive discrete series representation of the group Gm. Let

ρ1, ρ2, . . . , ρn be the self-contragredient, irreducible, non-isomorphic cuspidal

representations of the general linear groups, and let σ′ be a cuspidal represen-

tation of a Gm′ such that σ ∈ D(ρ1, ρ2, . . . , ρn;σ′) (we take n to be minimal).

From this we conclude that for an irreducible, self–contragredient representa-

tion ρ of a general linear group the following holds: if ρ /∈ {ρ1, ρ2, . . . , ρn},

then Jordρ(σ) = Jordρ(σ
′). Now, we define a sequence σ1, σ2, . . . , σn of the

strongly positive discrete series representations as follows: σk ∈ D(ρ1, . . . ρk;σ′);

if ρ /∈ {ρ1, ρ2, . . . ρk}, Jordρ(σk) = Jordρ(σ
′), and if ρ ∈ {ρ1, ρ2, . . . ρk}, then

Jordρ(σk) = Jordρ(σ).

More precisely, if Jordρl
(σ) = {a

(ρl)
1 , . . . , a

(ρl)
jρl

}, then the representation σ is

a unique subrepresentation of the representation

×n
l=1 ×

jρl

k=1 δ([ν
φl(a

(ρl)
k

)+1

2 ρl, ν
a
(ρl)
k

−1

2 ρl]) o σ′,
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and σk is a unique subrepresentation of

×k
l=1 ×

jρl
s=1 δ([ν

φl(a
(ρl)
s )+1

2 ρl, ν
a
(ρl)
s −1

2 ρl]) o σ′.

We will prove the unitarizability of σ̂ using induction over k = 1, 2, . . . n.

As for k = 1, in the previous section we have proved that the representation

σ̂1 is unitarizable (σ1 ∈ D(ρ1;σ
′)).

We assume now that the representation σ̂k is unitarizable; we will prove that

the representation σ̂k+1 is unitarizable.

Now, we employ the same strategy as in the previous section; we will just

briefly go through the main points.

Let Jordρk+1
(σk+1) = {a1, a2, . . . , atk+1

}. Here, tk+1 is obtained as follows:

αk+1 is a positive number such that ναk+1ρk+1 o σ′ reduces; so tk+1 = αk+1

or αk+1 − 1/2 or αk+1 + 1/2 (obviously, if αk+1 = 1/2 then tk+1 = 1). We

introduce auxiliary strongly positive discrete series which will be of use for us

for the double inductive procedure. We define σk+1,i as follows: for ρ 6= ρk+1

Jordρ(σk+1,i)= Jordρ(σk) and Jordρk+1
(σk+1,i) = {2, 4, . . . , 2j, aj+1, . . . , atk+1

},

where tk+1 − i = j.

Also we define σk+1,i+1,ni+1 as follows: for ρ 6= ρk+1, Jordρ(σk+1,i+1,ni+1 ) =

Jordρ(σk) and Jordρk+1
(σk+1,i+1,ni+1 ) = {2, 4, . . . , 2j + 2ni+1, aj+1, . . . , atk+1

}.

The first induction is over i, i.e. over the representations σk+1,i. For

i = 1 we have the representation σk+1,1 for which Jordρk+1
(σk+1,1) =

{2, 4, . . ., 2j, . . ., 2αk+1−3, atk+1
} (or Jordρk+1

(σk+1,1)={1, . . ., 2αk+1−3, atk+1
}

or Jordρk+1
(σk+1,1) = {2, . . . , 2αk+1 − 1, atk+1

}). The first two cases are quite

analogous to the generalized Steinberg case (Section 3); namely, since the re-

ducibility points and the composition series of the induced representations of

the form δ([ν−l1ρn+1, ν
l2ρn+1]) o σk are completely governed by Jordρk+1

(σk),

and Jordρk+1
(σk) = Jordρk+1

(σ′), we get totally analogous composition series

of the representation; the calculation of the signatures is also very similar. We

just have to check the bases for the various inductive procedures we use. The

same holds for the case Jordρk+1
(σk+1,1) = {2, . . . , 2αk+1 − 1, atk+1

}. First, we

prove the generalization of Lemma 3.7.

Lemma 5.1: Using the notation introduced in this section, assume

αk+1 = 1/2, Jordρk+1
(σ′) = ∅.

Then, the representation ̂σk+1,1,2 is unitarizable.
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Before we prove this lemma, we need the following result

Lemma 5.2: The representation ̂σk+1,1,2 is a unique irreducible quotient of the

representation L(ν3/2ρk+1, ν
1/2ρk+1) o σ̂k.

Proof. We denote ρ = ρk+1. By the Frobenius reciprocity and the expression

for the appropriate Jacquet module of the Aubert dual of a representation

(9), we see that it is sufficient to prove that the multiplicity of the irreducible

subquotient δ([ν1/2ρ, ν3/2ρ]) ⊗ σk in µ∗(δ([ν1/2ρ, ν3/2ρ]) o σk) is equal to one.

We have the following formula

µ∗(δ([ν
1
2 ρ, ν

3
2 ρ]) o σk) =(δ([ν

1
2 ρ, ν

3
2 ρ]) ⊗ 1 + δ([ν−

3
2 ρ, ν−

1
2 ρ]) ⊗ 1

+ ν−
1
2 ρ× ν

3
2 ⊗ 1 + ν

3
2 ρ⊗ ν

1
2 ρ+ ν−

1
2 ρ⊗ ν

3
2 ρ

+ 1 ⊗ δ([ν
1
2 ρ, ν

3
2 ρ])) o µ∗(σk).

If we assume that π1 ⊗ π2 is an irreducible subquotient of µ∗(σk) such that

δ([ν1/2ρ, ν3/2ρ]) ⊗ σk appears in M∗(δ([ν1/2ρ, ν3/2ρ])) o π1 ⊗ π2, we have the

following analysis: δ([ν1/2ρ, ν3/2ρ]) ⊗ 1 ≤ M∗(δ([ν1/2ρ, ν3/2ρ])) satisfies the

requirements with π1 = 1 and π2 = σk, the representations δ([ν−3/2ρ, ν1/2ρ])⊗1

and ν−1/2ρ× ν3/2 ⊗ 1 obviously do not, the same goes for ν−1/2ρ⊗ ν3/2ρ. The

ones to check are ν3/2ρ⊗ ν1/2ρ and 1 ⊗ δ([ν1/2ρ, ν3/2ρ]). But in these cases π1

should have ν1/2ρk+1 in the cuspidal support, which is not the case.

Proof of Lemma 5.1. We will prove the unitarizability using the same basic idea

as in Lemma 3.7. In the course of the proof we use some ideas from ([20, Section

8]).

By the induction hypothesis, the representation σ̂k is unitarizable. We write

down the Langlands’ parameter of the representation σ̂k as follows: σ̂k =

L(δ1ν
s1 , . . . , δlν

sl ; τ). The representations δi, i = 1, . . . , l are the discrete series

representations of the general linear groups; they do not have any twist of the

representation ρ = ρk+1 in their cuspidal supports. The representation τ is a

tempered representation with τ ↪→ δ′1 × · · · × δ′t o σ, where δ′i are again discrete

series representations without ρ in their cuspidal support; the representation σ

is a discrete series representation with σcusp = σ′. We have sl ∈ 1/2Z+. We

have an isomorphism:

ν3/2ρ× ν1/2ρ× δ1ν
s1 × · · · × δlν

sl o τ ∼= δ1ν
s1 × · · · × δlν

sl × ν3/2ρ× ν1/2ρo τ.
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We leave the right-hand side of the previous relation as it is if sl ≥ 3/2, if

not, we just move ν3/2ρ (isomorphically) until we get a standard representation

on the right-hand side. The representation on the right-hand side is standard

and has a unique irreducible quotient. There is an epimorphism from that

representation to L(ν3/2ρ, ν1/2)ρ o L(δ1ν
s1 , . . . , δlν

sl ; τ), so we see that then

̂σk+1,1,2 = L(δ1ν
s1 , . . . , δlν

sl , ν3/2ρ, ν1/2ρ; τ). (For simplicity of notation, we

assumed sl ≥ 3/2, but if it is not so, the following procedure also holds.) We

have the following epimorphism.

ν−1/2ρ× δ1ν
s1 × · · · × δlν

sl × ν3/2 × ν1/2ρo τ → ν−1/2ρo ̂σk+1,1,2.

The left-hand of the previous relation is isomorphic to δ1ν
s1 × · · · × δlν

sl ×

ν3/2ρ× ν−1/2ρ× ν1/2ρo τ , so we have an epimorphism:

δ1ν
s1 × · · · × δlν

sl × ν3/2ρ× ν−1/2ρ× ν1/2ρo τ → ν−1/2ρo ̂σk+1,1,2.

Assume that the restriction φ of this epimorphism to the representation space

δ1ν
s1 × · · · × δlν

sl × ν3/2ρ × L(ν1/2ρ, ν−1/2ρ) o τ is still an epimorphism. We

will now prove that this is not the case.

If this were the case, we should have

µ∗(δ1ν
s1 × · · · × δlν

sl × ν3/2ρ× L(ν1/2ρ, ν−1/2ρ) o τ) ≥ µ∗(ν−1/2ρo ̂σk+1,1,2).

To simplify notation, we introduce π = δ1ν
s1 × · · · × δlν

sl . We then have

π × ν
3
2 ρ× L(ν1/2ρ, ν−1/2ρ) o τ ∼= ν3/2ρ× L(ν1/2ρ, ν−1/2ρ) o (π o τ).

Let s be an integer such that the representation ρ is a representation ofGL(s, F ).

Now we compare the Jacquet modules with respect to the maximal standard

parabolic subgroup with the Levi subgroup isomorphic to GL(3s, F )×Gm′, for

the appropriate m′, of the representations ν3/2ρ × L(ν1/2ρ, ν−1/2ρ) o (π o τ)

and ν−1/2ρo ̂σk+1,1,2. We have the epimorphisms

ν3/2ρ× ν1/2ρ× π o τ → ̂σk+1,1,2 = L(δ1ν
s1 , . . . , δlν

sl , ν3/2ρ, ν1/2ρ; τ)

and

L(ν3/2ρ, ν1/2ρ) o (π o τ) → L(δ1ν
s1 , . . . , δlν

sl , ν3/2ρ, ν1/2ρ; τ)

By the Frobenius reciprocity, we have

Hom( ˜L(ν3/2ρ, ν1/2ρ) ⊗ (π o τ),

rGL(3s,F )×Gm′
(L(δ1ν

s1 , . . . , δlν
sl , ν3/2ρ, ν1/2ρ; τ))) 6= 0.
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So, the Jacquet module rGL(3s,F )×Gm′
(L(δ1ν

s1 , . . . , δlν
sl , ν3/2ρ, ν1/2ρ; τ)) has

an irreducible subquotient of the form L(ν−1/2ρ, ν−3/2ρ) ⊗ π1, where π1 is an

irreducible subquotient of π o τ . From this follows that

ν1/2ρ× L(ν−1/2ρ, ν−3/2ρ) ⊗ π1 ≤ rGL(3s,F )×Gm′
(ν−1/2ρo ̂σk+1,1,2).

The representation ν1/2ρ × L(ν−1/2ρ, ν−3/2ρ) has a unique irreducible rep-

resentation, Z({1/2}, {−1/2,−3/2}), in the Zelevinsky’s notation. We will

prove that the subquotient Z({1/2}, {−1/2,−3/2}) ⊗ π1 does not appear in

rGL(3s,F )×Gm′
(ν3/2ρ×L(ν1/2ρ, ν−1/2ρ)o (πo τ)). Using the structure formula

for the Jacquet modules, we get that the only subquotients of

rGL(3s,F )×Gm′
(ν3/2ρ× L(ν1/2ρ, ν−1/2ρ) o (π o τ))

which have only twists of ρ in the cuspidal support of the first factor, are of the

following form:

ν
3
2 ρ× L(ν3/2ρ, ν1/2ρ) ⊗ π′

1, ν
3/2ρ× ν−1/2ρ× ν−1/2ρ⊗ π′

1,

ν−3/2ρ× L(ν3/2ρ, ν1/2ρ) ⊗ π′
1, ν

−3/2ρ× ν−1/2ρ× ν−1/2ρ⊗ π′
1.

None of them has Z({1/2}, {−1/2,−3/2})⊗ π1 as a subquotient.

From this we conclude that there is a non-zero intertwining

ψ : π × ν3/2ρ× δ([ν−1/2ρ, ν1/2ρ]) o τ → ν−1/2ρo ̂σk+1,1,2/Imφ.

Since δ([ν−1/2ρ, ν1/2ρ]) does not appear in the tempered support of τ , and

δ([ν−1/2ρ, ν1/2ρ]) o σ is reducible, by [14, Lemma 1.2 (ii)], we know that the

representation δ([ν−1/2ρ, ν1/2ρ]) o τ is sum of two non-equivalent tempered

representations, say T1 and T2.

Using formulas for the Jacquet modules, we get that

rGL(2s,F )×Gm′′
(T1 + T2) =2δ([ν−1/2ρ, ν1/2ρ]) ⊗ τ + ν1/2ρ× ν1/2ρ⊗ τ

+
∑

2ν1/2ρ× π′
1 ⊗ ν−1/2ρo π′

2

+ π′′
1 ⊗ δ([ν−1/2ρ, ν1/2ρ]) o π′′

2 .

The sum is over all appropriate irreducible π′
1 ⊗ π′

2, π
′′
1 ⊗ π′′

2 ∈ µ∗(τ). Since

Hom(Ti, δ([ν
−1/2ρ, ν1/2ρ]) o τ) 6= 0, we get, say

rGL(2s,F )×Gm′′
(T1) ≥ δ([ν−1/2ρ, ν1/2ρ]) ⊗ τ + ν1/2ρ× ν1/2ρ⊗ τ,

rGL(2s,F )×Gm′′
(T2) ≥ δ([ν−1/2ρ, ν1/2ρ]) ⊗ τ.
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If we assume that

ψ|π×ν3/2ρoT1
: π × ν3/2ρo T1 → ν−1/2ρo ̂σk+1,1,2/Imφ

is non-zero, we will get that L(π, ν3/2ρ;T1) ≤ ν−1/2ρo ̂σk+1,1,2. But then, using

the Frobenius reciprocity, and fact that ν1/2ρ× ν1/2ρ⊗ τ ≤ µ∗(T1), we get that

λ⊗ ν−3/2ρ⊗ ν1/2ρ× ν1/2ρ⊗ τ ≤ µ∗(ν−1/2ρo ̂σk+1,1,2),

for some irreducible subquotient λ of π̃.

We will prove that this cannot hold, moreover we will prove that λ⊗ν−3/2ρ⊗

ν1/2ρ × ν1/2ρ ⊗ τ is not a subquotient of the appropriate Jacquet module of

π × ν−1/2ρo L(ν3/2ρ, ν1/2ρ; τ).

We observe that τ ≤ α o σ′, where α is an irreducible representation of an

appropriate general linear group, without twists of ρ in the cuspidal support.

Then it is not difficult to see that

L(ν3/2ρ, ν1/2ρ; τ) ≤ αo L(ν3/2ρ, ν1/2ρ;σ′).

So, we will actually prove that λ⊗ν−3/2ρ⊗ν1/2ρ×ν1/2ρ⊗τ is not a subquotient

of µ∗(π× ν−1/2ρ×αoL(ν3/2ρ, ν1/2ρ;σ′)). First, we will analyze all the possible

subquotients of µ∗(π× ν−1/2ρ×αoL(ν3/2ρ, ν1/2ρ;σ′)) of the form λ⊗ ζ. We

calculate

M∗(π × α) ×M∗(ν−1/2ρ) o µ∗(L(ν3/2ρ, ν1/2ρ;σ′)).

We further have

M∗(ν−1/2ρ) = ν−1/2ρ⊗ 1 + ν1/2ρ⊗ 1 + 1 ⊗ ν−1/2ρ,

and

µ∗(L(ν3/2ρ, ν1/2ρ;σ′))

= 1 ⊗ L(ν3/2ρ, ν1/2ρ;σ′) + ν−3/2ρ⊗ L(ν1/2ρ;σ′) + L(ν−1/2ρ, ν−3/2ρ) ⊗ σ′.

If we take π1 ⊗ π2 ∈ M∗(π × α), π′
1 ⊗ π′

2 ∈ M∗(ν−1/2ρ) and π′′
1 ⊗ π′′

2 ∈

µ∗(L(ν3/2ρ, ν1/2ρ;σ′)), then

λ⊗ ζ ≤ π1 × π′
1 × π′′

1 ⊗ π2 × π′
2 × π′′

2 .

Since λ does not have twists of ρ in the cuspidal support, we get π′
1 ⊗ π′

2 =

1 ⊗ ν−1/2ρ and π′′
1 ⊗ π′′

2 = 1 ⊗ L(ν3/2ρ, ν1/2ρ;σ′), so

λ⊗ ζ ≤ π1 ⊗ π2 × ν−1/2ρo L(ν3/2ρ, ν1/2ρ;σ′).
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Now we want to examine the appropriate Jacquet module of ζ, such that in

the second factor we do not have twists of ρ in the cuspidal support. It turns

out that the appropriate subquotients are of the form ζ1 ×L(ν−1/2ρ, ν−3/2ρ)×

ν±1/2ρ ⊗ ζ2 o σ′, where ζ1 ⊗ ζ2 ∈ µ∗(π2). We want τ to be a subquotient

of ζ2 o σ′, and when we compare the dimensions of the groups involved, we

see that ζ1 = 1, so we actually want to examine if ν−3/2ρ ⊗ ν1/2ρ × ν1/2ρ ≤

m∗(L(ν−1/2ρ, ν−3/2ρ) × ν±1/2ρ). This cannot hold, because, we do not have

ν1/2ρ two times in the cuspidal support on the right-hand side, as we have for

the left-hand side.

From this we conclude that L(π, ν3/2ρ;T2) ≤ ν−1/2ρ o ̂σk+1,1,2. The

other subquotient of ν−1/2ρ o ̂σk+1,1,2 already appears as a subquotient of
̂δ([ν−1/2ρ, ν3/2ρ])o σ̂k, so we know that it is unitarizable. We want to prove the

unitarizability of L(π, ν3/2ρ;T2). We use the same idea as in Lemma 3.7, but

now we have a bit more elaborated proof. By [14, Lemmas 6.1 and 6.2], and

since Jordρ(σ) = Jordρ(σ
′), δ([ν−1/2ρ, ν1/2ρ]) o σ = τ1 ⊕ τ2 for some tempered

representations τi, i = 1, 2. Using the factorization of the long intertwining

operator, we see that ν1/2ρoTi reduces if and only if ν1/2ρo τi reduces (where

Ti ↪→ δ′1 × · · · × δ′t o τi). Here, τ2 is a representation which does not have

ν1/2ρ×ν1/2ρ⊗σ in its Jacquet module. Analogously to what we have done, we

prove that the representation ν1/2ρ o τ2 does not reduce; otherwise, it would

have δ([ν−1/2ρ, ν1/2ρ])oσ0 as a subquotient, and again, by comparing Jacquet

modules, we see that it is not possible. Here σ0 is a representation for which

Jord(σ0) = Jord(σ)∪ {(2, ρ)}. In this way, we have proved that the representa-

tion ν1/2ρo T2 is irreducible. We conclude

ν1/2ρ × π̃ o T2
∼= π̃ × ν1/2ρ o T2

∼= π̃ × ν−1/2ρ o T2
∼= ν−1/2ρ × π̃ o T2.

Examining the restriction of the corresponding intertwining operator, we see

that

ν1/2ρo L(π;T2) ∼= ν−1/2ρo L(π;T2).

Let α denote an irreducible subrepresentation of ν1/2ρ o L(π;T2). Then α̃ is

a quotient of ν−1/2ρ o ˜L(π;T2). The representation δ([ν−1/2ρ, ν1/2ρ]) × π o τ

has exactly two irreducible quotients, L(π;Ti), i = 1, 2, both contained in

δ([ν−1/2ρ, ν1/2ρ])oL(π; τ); we see that both of them are unitarizable ( L(π; τ) =

σ̂k), so α̃ ∼= α, and ˜L(π;T2) = L(π;T2). Since Jord(σ′) = Jord(σ′), we get

α ↪→ ν1/2ρ o L(π;T2) ∼= ν−1/2ρ o L(π;T2), and so α = L(π, ν1/2ρ;T2), and
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α = L(π, ν1/2ρ;T2). The representation ν1/2ρo L(π;T2) is irreducible. All the

subquotients of the representation ν3/2ρ o L(π;T2) are unitarizable, and so is

L(ν3/2ρ, π;T2).
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[21] M. Tadić, On regular square integrable representations of p-adic groups, American Jour-

nal of Mathematics 120 (1998), 159–210.

[22] David A. Vogan, Jr., Unitarizability of certain series of representations, Annals of Math-

ematics. Second Series 120 (1984), 141–187.

[23] A. V. Zelevinsky, Induced representations of reductive germp-adic groups. II. On irre-

ducible representations of GL(n), Annales Scientifiques de l’École Normale Supérieure.
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